Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts...Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.展开更多
目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、...目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、Shenk’s方法在不同仪器测量光谱之间模型转移应用,优化模型参数,提高实验室仪器建立的校正模型应用于在线光谱仪器的预测精度。结果经过Shenk’s算法转移,主从机的光谱平均差异降低为0.0075,光谱校正率达到98.95%。利用模型转移方法与偏最小二乘模型结合,将实验室分析光谱仪建立的模型用于生产在线光谱仪测量光谱预测,显著提高了牛奶中蛋白质含量预测准确度,不同仪器之间模型预测相对均方根误差从5.52%下降到2.03%。结论本研究的方法实现了实验室分析与在线检测仪器测量光谱及定量分析模型转移共享,为近红外在线检测的智能化改进提供了基础。展开更多
文摘Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.
文摘目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、Shenk’s方法在不同仪器测量光谱之间模型转移应用,优化模型参数,提高实验室仪器建立的校正模型应用于在线光谱仪器的预测精度。结果经过Shenk’s算法转移,主从机的光谱平均差异降低为0.0075,光谱校正率达到98.95%。利用模型转移方法与偏最小二乘模型结合,将实验室分析光谱仪建立的模型用于生产在线光谱仪测量光谱预测,显著提高了牛奶中蛋白质含量预测准确度,不同仪器之间模型预测相对均方根误差从5.52%下降到2.03%。结论本研究的方法实现了实验室分析与在线检测仪器测量光谱及定量分析模型转移共享,为近红外在线检测的智能化改进提供了基础。