1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are mor...1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are more than 700salt lakes,each with an area larger than 1 km2,in the展开更多
On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipit...On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.展开更多
基金Financial support from the State Key Program of NNSFC (20836009)the NNSFCs (Grants 21106136, 21276194 and 21306136)
文摘1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are more than 700salt lakes,each with an area larger than 1 km2,in the
基金ItemSponsored by National Natural Science Foundation of China (50504007 ,50474086 ,50334010) Liaoning ProvinceScience Foundation (20041009)
文摘On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.