Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain ...Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PMzs) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed. 141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5, and contained approximately equal amounts of guaiacyl and syringyl compounds. 13-Sitostrol also made up relatively a large fraction of PMz5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal alkanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.展开更多
Based on MODIS images, large-scale flow field charts and environmental monitoring data, we thor- oughly analyzed the spatial distribution of wheat straw burning in North China, with focus on its envi- ronmental impact...Based on MODIS images, large-scale flow field charts and environmental monitoring data, we thor- oughly analyzed the spatial distribution of wheat straw burning in North China, with focus on its envi- ronmental impacts on the air quality of Beijing and pollution transport paths. And we anatomized changes of air quality in Beijing under the impacts of pollution generated by wheat straw burning around. The results indicate that: (1) The North China Plain, a winter-wheat growing area, is the main source of pollutants induced by wheat straw burning in Beijing. The direction of south-west is the dominant heavy pollution transport path. (2) Impacts of wheat straw burning on air quality are mainly manifested by significantly increasing CO concentration. (3) Precursors of O3 generated by wheat straw burning, combining with favorable meteorological conditions, can induce increasing O3 concentration greatly. NO concentration will be greatly increased due to decreasing O3 concentration at night. (4) Atmospheric particles, especially the fine ones, from wheat straw burning exert considerable influ- ence on Beijing air quality. (5) Different contributions of wheat straw burning to pollutants are identified. Ratios of PM10/SO2, CO/SO2, etc., can be applied to indicate pollution extent of wheat straw burning. High ratios of PM10/SO2 and CO/SO2 show that the air quality was heavily impacted by wheat straw burning and these ratios can be employed as indicators of contribution of wheat straw burning to the degradation of Beijing air quality. (6) Randomness of wheat straw burning activities renders random outbreak of air pollution of this type. Regional and extensive wheat straw burning activities can cause serious air pollution event.展开更多
The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soilsamples from different forest stands: the first and second plantations of Chinese fir, evergreen broad-leavedfores...The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soilsamples from different forest stands: the first and second plantations of Chinese fir, evergreen broad-leavedforests, and clear-cut and burnt Chinese fir land located at Xihou Village, Nanping of Fujian Province. Thesoils were humic red soil originated from weathered coarse granite of the Presinian system. Soil PH, CEC,base saturation, exchangeable Ca ̄(2+), exchangeable Mg ̄(2+) and Al-P declined after continuous plantation ofChinese fir. The same trends were also found in the soils under broad-leaved stands and slash burnt lands.The explantation was that not merely the biological nature of the Chinese fir itself but the natural leachingof nutrients, soil erosion and nutrient losses due to clear cutting and slash burning of the preceding plantationcaused the soil deterioration. Only some of main soil nutrients decreased after continuons plantation ofChinese fir, depending on specific silvicultural system, which was different from the conclusions in some otherreports which showed that all main nutrients, such as OM, total N, available P and available K decreased.Some neccessary steps to make up for the lost base, to apply P fertilizer and to avoid buring on clear cutlands could be taken to preventsoil degradation and yield decline in the system of continuous plantation ofChinese fir.展开更多
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2001AA641060 2003AA641040)the National Basic Research Program (973) of China (No. 2002CB410801).
文摘Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PMzs) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed. 141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5, and contained approximately equal amounts of guaiacyl and syringyl compounds. 13-Sitostrol also made up relatively a large fraction of PMz5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal alkanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.
基金the 985 Project of Central University for Nationalities, China (Grant No. CUN 985-3-3)
文摘Based on MODIS images, large-scale flow field charts and environmental monitoring data, we thor- oughly analyzed the spatial distribution of wheat straw burning in North China, with focus on its envi- ronmental impacts on the air quality of Beijing and pollution transport paths. And we anatomized changes of air quality in Beijing under the impacts of pollution generated by wheat straw burning around. The results indicate that: (1) The North China Plain, a winter-wheat growing area, is the main source of pollutants induced by wheat straw burning in Beijing. The direction of south-west is the dominant heavy pollution transport path. (2) Impacts of wheat straw burning on air quality are mainly manifested by significantly increasing CO concentration. (3) Precursors of O3 generated by wheat straw burning, combining with favorable meteorological conditions, can induce increasing O3 concentration greatly. NO concentration will be greatly increased due to decreasing O3 concentration at night. (4) Atmospheric particles, especially the fine ones, from wheat straw burning exert considerable influ- ence on Beijing air quality. (5) Different contributions of wheat straw burning to pollutants are identified. Ratios of PM10/SO2, CO/SO2, etc., can be applied to indicate pollution extent of wheat straw burning. High ratios of PM10/SO2 and CO/SO2 show that the air quality was heavily impacted by wheat straw burning and these ratios can be employed as indicators of contribution of wheat straw burning to the degradation of Beijing air quality. (6) Randomness of wheat straw burning activities renders random outbreak of air pollution of this type. Regional and extensive wheat straw burning activities can cause serious air pollution event.
文摘The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soilsamples from different forest stands: the first and second plantations of Chinese fir, evergreen broad-leavedforests, and clear-cut and burnt Chinese fir land located at Xihou Village, Nanping of Fujian Province. Thesoils were humic red soil originated from weathered coarse granite of the Presinian system. Soil PH, CEC,base saturation, exchangeable Ca ̄(2+), exchangeable Mg ̄(2+) and Al-P declined after continuous plantation ofChinese fir. The same trends were also found in the soils under broad-leaved stands and slash burnt lands.The explantation was that not merely the biological nature of the Chinese fir itself but the natural leachingof nutrients, soil erosion and nutrient losses due to clear cutting and slash burning of the preceding plantationcaused the soil deterioration. Only some of main soil nutrients decreased after continuons plantation ofChinese fir, depending on specific silvicultural system, which was different from the conclusions in some otherreports which showed that all main nutrients, such as OM, total N, available P and available K decreased.Some neccessary steps to make up for the lost base, to apply P fertilizer and to avoid buring on clear cutlands could be taken to preventsoil degradation and yield decline in the system of continuous plantation ofChinese fir.