四川盆地海相层系发现的大气藏部含或高舍硫化氢,都发育一定厚度的优质储层,而且优质储层与硫化氢分布具有密切的关系,即气藏硫化氢含量越高,储层性质越好,气藏产能也越大。研究发现,在 TSR(硫酸盐热化学还原反应)过程中,随着膏质岩类...四川盆地海相层系发现的大气藏部含或高舍硫化氢,都发育一定厚度的优质储层,而且优质储层与硫化氢分布具有密切的关系,即气藏硫化氢含量越高,储层性质越好,气藏产能也越大。研究发现,在 TSR(硫酸盐热化学还原反应)过程中,随着膏质岩类的溶解(为 TSR 反应提供 SO_4^(2-)),使储集孔隙初步得到改善;而 TSR 产生的硫化氢溶于水形成的氢硫酸,具有强烈腐蚀性,加速了储层中白云岩的溶蚀,形成孔隙极其发育的海绵状孔洞体系,并呈层状分布。电镜下可以清晰看到白云石晶面的溶蚀坑及溶孔中 TSR 产生的硫磺晶体。溶孔中自生碳酸盐的碳同位素在-10.3‰~18.2‰,而地层碳酸盐的碳同位素在+3.7‰~+0.9‰,证实了 TSR 过程中有机-无机的相互作用,即有机成因烃类中的碳转移到次生碳酸盐岩中。包裹体分析表明,次生方解石中的包体富含硫化氢,且均一温度多数在160℃以上,具备 TSR 发生的温度条件;硫化氢和硫磺的硫同位素比地层硫酸盐的硫同位素偏轻8‰左右,是 TSR 作用的证据。因此高含硫化氢气藏的优质储层是在早期埋藏溶蚀作用的基础上,后期发生 TSR 及其形成的酸性流体对深埋碳酸盐岩储层再次进行深刻改造和强烈溶蚀作用的结果;同时可以运用硫化氢来预测碳酸盐岩优质储层的分布。展开更多
The Lower Triassic Feixianguan (飞仙关) Formation oolitic shoal reservoir in the Sichuan (四川) basin (Southwest China) is currently an exploration and research highlight in China. The reservoir is widely believ...The Lower Triassic Feixianguan (飞仙关) Formation oolitic shoal reservoir in the Sichuan (四川) basin (Southwest China) is currently an exploration and research highlight in China. The reservoir is widely believed to be formed mainly by burial dissolution and/or dolomitization on the basis of primary intergranular pores. In this study, through a comprehensive geological study on the whole basin, the dissolution and dolomitization are suggested not to be the fundamental factor of reservoir formation and there thus may be a possible new fundamental mechanism-the preservation of primary intergranular pores, i.e., the retention diagenesis. Based on this, a complex and multi-stage reservoir evolution and formation model is proposed. In the model, the depositional environment is the basis of reservoir initial formation. Subsequently, early compaction and shallow burial cementation result in the primary reservoir differentiation. Then, multi-stage burial dissolution alters and adjusts the reservoir. Because the last stage gaseous hydrocarbons have little diagenetic impact, the reservoir is formed finally. Therefore, this study presents a possible new fundamental mechanism and evolution model for the reservoir formation. The results can be applied in the regional reservoir predication and shaping exploration strategies, and provide reference for the study of shoal reservoirs in other areas.展开更多
With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-so...With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-source dissolution and out-source dissolution based on macro-microcosmic petrology and geochemistry features. The main differences in the two stages are in the origin and moving pass of acid fluids. Geochemical evidence indicates that burial dissolution fluids might be ingredients of organic acids, CO2 and H2S associated with organic matter maturation and hydrocarbon decomposition, and the in-source fluid came from organic matter in the granule limestone itself, but the out-source was mainly from other argillaceous carbonate rocks far away. So, the forming of a burial dissolution reservoir resulted from both in-source and the out-source dissolutions. The granule limestone firstly formed unattached pinholes under in-source dissolution in situ, and afterwards suffered wider dissolution with out-source fluids moving along unconformities, seams, faults and associate fissures. The second stage was much more important, and the mineral composition in the stratum and heat convection of the fluid were also important in forming favorable reservoirs.展开更多
This study investigated the characteristics and genesis of reservoirs in the 2^(nd) and 4^(th) members of Sinian Dengying Formation in northern Sichuan and its surrounding areas, on the basis of outcrop, drilling core...This study investigated the characteristics and genesis of reservoirs in the 2^(nd) and 4^(th) members of Sinian Dengying Formation in northern Sichuan and its surrounding areas, on the basis of outcrop, drilling cores and thin section observation and geochemical analysis. The reservoirs of 2^(nd) member are distributed in the middle part of the stratum. The reservoir quality is controlled by supergene karst and the distribution of mound-shoal complex. The bedded elongated isolated algal framework solution-cave and the residual "grape-lace" cave, which are partially filled with multi-stage dolosparite, constituted the main reservoir space of the 2^(nd) member. There is no asphalt distribution in the pores. The pore connectivity is poor, and the porosity and permeability of the reservoir is relatively low. The reservoirs of 4^(th) member were distributed in the upper and top part of the stratum. The reservoir quality is controlled by burial dissolution and the distribution of mound-shoal complex. The bedded algal framework solution-pores or caves, intercrystalline pores and intercrystalline dissolved pores constituted the main reservoir space of the 4^(th) member. It's partially filled with asphalt and quartz, without any dolosparite fillings in the pores and caves. The pore connectivity is good. Most of the 4^(th) member reservoirs had medium-low porosity and low permeability, and, locally, medium-high porosity and medium permeability. Affected by the development of mound-shoal complex and heterogeneous dissolution, the platform margin along Ningqiang, Guangyuan, Jiange and Langzhong is the most favorable region for reservoir development. Deep buried Dengying Formation in the guangyuan and langzhong areas should be the most important hydrocarbon target for the future exploration.展开更多
文摘四川盆地海相层系发现的大气藏部含或高舍硫化氢,都发育一定厚度的优质储层,而且优质储层与硫化氢分布具有密切的关系,即气藏硫化氢含量越高,储层性质越好,气藏产能也越大。研究发现,在 TSR(硫酸盐热化学还原反应)过程中,随着膏质岩类的溶解(为 TSR 反应提供 SO_4^(2-)),使储集孔隙初步得到改善;而 TSR 产生的硫化氢溶于水形成的氢硫酸,具有强烈腐蚀性,加速了储层中白云岩的溶蚀,形成孔隙极其发育的海绵状孔洞体系,并呈层状分布。电镜下可以清晰看到白云石晶面的溶蚀坑及溶孔中 TSR 产生的硫磺晶体。溶孔中自生碳酸盐的碳同位素在-10.3‰~18.2‰,而地层碳酸盐的碳同位素在+3.7‰~+0.9‰,证实了 TSR 过程中有机-无机的相互作用,即有机成因烃类中的碳转移到次生碳酸盐岩中。包裹体分析表明,次生方解石中的包体富含硫化氢,且均一温度多数在160℃以上,具备 TSR 发生的温度条件;硫化氢和硫磺的硫同位素比地层硫酸盐的硫同位素偏轻8‰左右,是 TSR 作用的证据。因此高含硫化氢气藏的优质储层是在早期埋藏溶蚀作用的基础上,后期发生 TSR 及其形成的酸性流体对深埋碳酸盐岩储层再次进行深刻改造和强烈溶蚀作用的结果;同时可以运用硫化氢来预测碳酸盐岩优质储层的分布。
基金supported by the PetroChina Youth Innovation Foundation (No. 06E1018)Key Subject Construction Project of Sichuan Province (No. SZD0414)
文摘The Lower Triassic Feixianguan (飞仙关) Formation oolitic shoal reservoir in the Sichuan (四川) basin (Southwest China) is currently an exploration and research highlight in China. The reservoir is widely believed to be formed mainly by burial dissolution and/or dolomitization on the basis of primary intergranular pores. In this study, through a comprehensive geological study on the whole basin, the dissolution and dolomitization are suggested not to be the fundamental factor of reservoir formation and there thus may be a possible new fundamental mechanism-the preservation of primary intergranular pores, i.e., the retention diagenesis. Based on this, a complex and multi-stage reservoir evolution and formation model is proposed. In the model, the depositional environment is the basis of reservoir initial formation. Subsequently, early compaction and shallow burial cementation result in the primary reservoir differentiation. Then, multi-stage burial dissolution alters and adjusts the reservoir. Because the last stage gaseous hydrocarbons have little diagenetic impact, the reservoir is formed finally. Therefore, this study presents a possible new fundamental mechanism and evolution model for the reservoir formation. The results can be applied in the regional reservoir predication and shaping exploration strategies, and provide reference for the study of shoal reservoirs in other areas.
文摘With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-source dissolution and out-source dissolution based on macro-microcosmic petrology and geochemistry features. The main differences in the two stages are in the origin and moving pass of acid fluids. Geochemical evidence indicates that burial dissolution fluids might be ingredients of organic acids, CO2 and H2S associated with organic matter maturation and hydrocarbon decomposition, and the in-source fluid came from organic matter in the granule limestone itself, but the out-source was mainly from other argillaceous carbonate rocks far away. So, the forming of a burial dissolution reservoir resulted from both in-source and the out-source dissolutions. The granule limestone firstly formed unattached pinholes under in-source dissolution in situ, and afterwards suffered wider dissolution with out-source fluids moving along unconformities, seams, faults and associate fissures. The second stage was much more important, and the mineral composition in the stratum and heat convection of the fluid were also important in forming favorable reservoirs.
基金Supported by the China National Science and Technology Major Project(2017ZX05001001-002)
文摘This study investigated the characteristics and genesis of reservoirs in the 2^(nd) and 4^(th) members of Sinian Dengying Formation in northern Sichuan and its surrounding areas, on the basis of outcrop, drilling cores and thin section observation and geochemical analysis. The reservoirs of 2^(nd) member are distributed in the middle part of the stratum. The reservoir quality is controlled by supergene karst and the distribution of mound-shoal complex. The bedded elongated isolated algal framework solution-cave and the residual "grape-lace" cave, which are partially filled with multi-stage dolosparite, constituted the main reservoir space of the 2^(nd) member. There is no asphalt distribution in the pores. The pore connectivity is poor, and the porosity and permeability of the reservoir is relatively low. The reservoirs of 4^(th) member were distributed in the upper and top part of the stratum. The reservoir quality is controlled by burial dissolution and the distribution of mound-shoal complex. The bedded algal framework solution-pores or caves, intercrystalline pores and intercrystalline dissolved pores constituted the main reservoir space of the 4^(th) member. It's partially filled with asphalt and quartz, without any dolosparite fillings in the pores and caves. The pore connectivity is good. Most of the 4^(th) member reservoirs had medium-low porosity and low permeability, and, locally, medium-high porosity and medium permeability. Affected by the development of mound-shoal complex and heterogeneous dissolution, the platform margin along Ningqiang, Guangyuan, Jiange and Langzhong is the most favorable region for reservoir development. Deep buried Dengying Formation in the guangyuan and langzhong areas should be the most important hydrocarbon target for the future exploration.