Based on an eddy permitting ocean general circulation model, the response of water masses to two distinct climate scenarios in the South Pacific is assessed in this paper. Under annually repeating atmospheric forcing ...Based on an eddy permitting ocean general circulation model, the response of water masses to two distinct climate scenarios in the South Pacific is assessed in this paper. Under annually repeating atmospheric forcing that is characterized by different westerlies and associated heat flux, the response of Subantarctic Mode Water(SAMW) and Antarctic Intermediate Water(AAIW) is quantitatively estimated. Both SAMW and AAIW are found to be warmer, saltier and denser under intensified westerlies and increased heat loss. The increase in the subduction volume of SAMW and AAIW is about 19.8 Sv(1 Sv =10-6m-3s-(-1)). The lateral induction term plays a dominant role in the changes in the subduction volume due to the deepening of the mixed layer depth(MLD). Furthermore, analysis of the buoyancy budget is used to quantitatively diagnose the reason for the changes in the MLD. The deepening of the MLD is found to be primarily caused by the strengthening of heat loss from the ocean to the atmosphere in the formation region of SAMW and AAIW.展开更多
The seasonal variation of mixing layer depth (MLD) in the ocean is determined by a wind stress and a buoy- ance flux. A South China Sea (SCS) ocean data assimilation system is used to analyze the seasonal cycle of...The seasonal variation of mixing layer depth (MLD) in the ocean is determined by a wind stress and a buoy- ance flux. A South China Sea (SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD. It is found that the variability of MLD in the SCS is shallow in summer and deep in winter, as is the case in general. Owing to local atmosphere forcing and ocean dynamics, the seasonal variability shows a regional characteristic in the SCS. In the northern SCS, the MLD is shallow in summer and deep in winter, affected coherently by the wind stress and the buoyance flux. The variation of MLD in the west is close to that in the central SCS, influenced by the advection of strong western boundary currents. The eastern SCS presents an annual cycle, which is deep in summer and shallow in winter, primarily impacted by a heat flux on the air-sea interface. So regional characteristic needs to be cared in the analysis about the MLD of SCS.展开更多
The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconve...The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconventional oil production in the USA accounted for 41%of the total oil production;and unconventional natural gas production in China accounted for 35%of total gas production,showing strong growth momentum of unconventional hydrocarbons explorations.Unconventional hydrocarbons generally coexist with conventional petroleum resources;they sometimes distribute in a separate system,not coexisting with a conventional system.Identification and prediction of unconventional resources and their potentials are prominent challenges for geologists.This study analyzed the results of 12,237 drilling wells in six representative petroliferous basins in China and studied the correlations and differences between conventional and unconventional hydrocarbons by comparing their geological features.Migration and accumulation of conventional hydrocarbon are caused dominantly by buoyance.Wepropose a concept of buoyance-driven hydrocarbon accumulation depth to describe the deepest hydrocarbon accumulation depth driven dominantly by buoyance;beyond this depth the buoyance becomes unimportant for hydrocarbon accumulation.We found that the buoyance-driven hydrocarbon accumulation depth in petroliferous basins controls the different oil/gas reservoirs distribution and resource potentials.Hydrocarbon migration and accumulations above this depth is dominated by buoyancy,forming conventional reservoirs in traps with high porosity and permeability,while hydrocarbon migration and accumulation below this depth is dominated by non-buoyancy forces(mainly refers to capillary force,hydrocarbon volumeexpansion force,etc.),forming unconventional reservoirs in tight layers.The buoyance-driven hydrocarbon accumulation depths in six basins in China range from 1200mto 4200 m,which become shallowerwith increasing geothermal gradient,decreasing part展开更多
基金supported by the Major State Basic Research Development Program of China(Grant No.2016YFA0601804)the National Natural Science Foundation of China(Grant Nos.41306208,41276200,41406214,41376190 and 41606217)+4 种基金the scientific Research Foundation of Nanjing University of Information Science and Technology(Grant No.2015r043)the open project of the Polar Research Institute of China(Grant No.KP201301)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Jiangsu Government Scholarship for Overseas Studiesthe China Scholarship Council
文摘Based on an eddy permitting ocean general circulation model, the response of water masses to two distinct climate scenarios in the South Pacific is assessed in this paper. Under annually repeating atmospheric forcing that is characterized by different westerlies and associated heat flux, the response of Subantarctic Mode Water(SAMW) and Antarctic Intermediate Water(AAIW) is quantitatively estimated. Both SAMW and AAIW are found to be warmer, saltier and denser under intensified westerlies and increased heat loss. The increase in the subduction volume of SAMW and AAIW is about 19.8 Sv(1 Sv =10-6m-3s-(-1)). The lateral induction term plays a dominant role in the changes in the subduction volume due to the deepening of the mixed layer depth(MLD). Furthermore, analysis of the buoyancy budget is used to quantitatively diagnose the reason for the changes in the MLD. The deepening of the MLD is found to be primarily caused by the strengthening of heat loss from the ocean to the atmosphere in the formation region of SAMW and AAIW.
基金The National Basic Research Program of China under contract Nos 2011CB403505 and 2011CB403504the National NaturalScience Foundation of China under contract No.41206007+2 种基金the City University of Hong Kong Stritegic Research Grants under contract Nos 7002917 and 7002780the Knowledge Innovation Project for Distinguished Young Scholar of The Chinese Academy of Sciences under contract KZCX2-EWQN203the foundation for operational development of the National Marine Environment Forecasting Center under contract No.2013006
文摘The seasonal variation of mixing layer depth (MLD) in the ocean is determined by a wind stress and a buoy- ance flux. A South China Sea (SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD. It is found that the variability of MLD in the SCS is shallow in summer and deep in winter, as is the case in general. Owing to local atmosphere forcing and ocean dynamics, the seasonal variability shows a regional characteristic in the SCS. In the northern SCS, the MLD is shallow in summer and deep in winter, affected coherently by the wind stress and the buoyance flux. The variation of MLD in the west is close to that in the central SCS, influenced by the advection of strong western boundary currents. The eastern SCS presents an annual cycle, which is deep in summer and shallow in winter, primarily impacted by a heat flux on the air-sea interface. So regional characteristic needs to be cared in the analysis about the MLD of SCS.
基金by the National Natural Science Foundation of China(No.U19B6003-02)the National Basic Research Program(973)of China(No.2011CB201100).
文摘The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconventional oil production in the USA accounted for 41%of the total oil production;and unconventional natural gas production in China accounted for 35%of total gas production,showing strong growth momentum of unconventional hydrocarbons explorations.Unconventional hydrocarbons generally coexist with conventional petroleum resources;they sometimes distribute in a separate system,not coexisting with a conventional system.Identification and prediction of unconventional resources and their potentials are prominent challenges for geologists.This study analyzed the results of 12,237 drilling wells in six representative petroliferous basins in China and studied the correlations and differences between conventional and unconventional hydrocarbons by comparing their geological features.Migration and accumulation of conventional hydrocarbon are caused dominantly by buoyance.Wepropose a concept of buoyance-driven hydrocarbon accumulation depth to describe the deepest hydrocarbon accumulation depth driven dominantly by buoyance;beyond this depth the buoyance becomes unimportant for hydrocarbon accumulation.We found that the buoyance-driven hydrocarbon accumulation depth in petroliferous basins controls the different oil/gas reservoirs distribution and resource potentials.Hydrocarbon migration and accumulations above this depth is dominated by buoyancy,forming conventional reservoirs in traps with high porosity and permeability,while hydrocarbon migration and accumulation below this depth is dominated by non-buoyancy forces(mainly refers to capillary force,hydrocarbon volumeexpansion force,etc.),forming unconventional reservoirs in tight layers.The buoyance-driven hydrocarbon accumulation depths in six basins in China range from 1200mto 4200 m,which become shallowerwith increasing geothermal gradient,decreasing part