Suction bucket foundations can be divided into four compartments by cruciform internal bulkheads,thereby yielding better capacity in certain conditions than those without internal bulkheads.As yet,no systematic study ...Suction bucket foundations can be divided into four compartments by cruciform internal bulkheads,thereby yielding better capacity in certain conditions than those without internal bulkheads.As yet,no systematic study has been conducted regarding the effects of cruciform internal bulkheads on the capacities of suction bucket foundations.In this study,we established a large number of finite element models of suction bucket foundations with and without cruciform internal bulkheads and of solid embedded circular foundations.We found the uniaxial capacities and failure modes of suction bucket foundations with various depth ratios to remain basically unaffected by internal bulkheads in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,we observed the uniaxial moment and horizontal capacities and corresponding failure modes of suction bucket foundations with a low depth ratio to be obviously affected by internal bulkheads.In this case,the uniaxial moment capacities,in particular,as well as the horizontal capacities of suction bucket foundations with cruciform internal bulkheads become obviously greater than those without internal bulkheads.Under combined loading,we found the failure envelopes of suction bucket foundations with and without cruciform internal bulkheads and of solid circular foundation to also be basically consistent in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,cruciform internal bulkheads can obviously change the shapes of the failure envelopes of bucket foundations with a small depth ratio.We conclude that when the acting vertical load or foundation depth is relatively small,suction bucket foundations with cruciform internal bulkheads can be subjected to larger moment and horizontal loads in soft clays with high strength heterogeneity.展开更多
The added mass coefficient and the water level index formulas for the same-phase and anti-phase vibration of rectangular liquid tanks' bulkheads were derived based on dry mode theory. Three fluid-structure interac...The added mass coefficient and the water level index formulas for the same-phase and anti-phase vibration of rectangular liquid tanks' bulkheads were derived based on dry mode theory. Three fluid-structure interaction numerical methods including Fluid FEM and Fluid BEM were used in this case. The comparison of numerical and theoretical results by the present method shows that ANSYS/Fluid80 is more credible, the NASTRAN/Virtual Mass Method is more suitable for engineering calculations and results of the same-phase vibration by the present method is more accurate.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51479133,51109157)the Elite Scholar Program of Tianjin University(2017XRG0040)
文摘Suction bucket foundations can be divided into four compartments by cruciform internal bulkheads,thereby yielding better capacity in certain conditions than those without internal bulkheads.As yet,no systematic study has been conducted regarding the effects of cruciform internal bulkheads on the capacities of suction bucket foundations.In this study,we established a large number of finite element models of suction bucket foundations with and without cruciform internal bulkheads and of solid embedded circular foundations.We found the uniaxial capacities and failure modes of suction bucket foundations with various depth ratios to remain basically unaffected by internal bulkheads in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,we observed the uniaxial moment and horizontal capacities and corresponding failure modes of suction bucket foundations with a low depth ratio to be obviously affected by internal bulkheads.In this case,the uniaxial moment capacities,in particular,as well as the horizontal capacities of suction bucket foundations with cruciform internal bulkheads become obviously greater than those without internal bulkheads.Under combined loading,we found the failure envelopes of suction bucket foundations with and without cruciform internal bulkheads and of solid circular foundation to also be basically consistent in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,cruciform internal bulkheads can obviously change the shapes of the failure envelopes of bucket foundations with a small depth ratio.We conclude that when the acting vertical load or foundation depth is relatively small,suction bucket foundations with cruciform internal bulkheads can be subjected to larger moment and horizontal loads in soft clays with high strength heterogeneity.
基金supported by the Dalian Shipbuilding Industry Co., Ltd
文摘The added mass coefficient and the water level index formulas for the same-phase and anti-phase vibration of rectangular liquid tanks' bulkheads were derived based on dry mode theory. Three fluid-structure interaction numerical methods including Fluid FEM and Fluid BEM were used in this case. The comparison of numerical and theoretical results by the present method shows that ANSYS/Fluid80 is more credible, the NASTRAN/Virtual Mass Method is more suitable for engineering calculations and results of the same-phase vibration by the present method is more accurate.