Superalloys are grouped as hard-to-cut materials with relatively poor machinability.Tool wear is considered one of the main machinability attributes in machining superalloys.Although numerous works have been reported ...Superalloys are grouped as hard-to-cut materials with relatively poor machinability.Tool wear is considered one of the main machinability attributes in machining superalloys.Although numerous works have been reported on factors governing tool life in machining superalloys,no study was found on the effect of nanoparticles stability on nanofluid performance and consequently resulted tool wear morphologies.In the present work,the nanoparticles were reinforced by means of improving the stability of the base fluid.To that accomplished,the surface active agent (surfactant) was added to the base cutting fluid as a reinforcing element.The effects of new lubricant on the tool wear morphology of A286 works parts were assessed.展开更多
In this study, a 3D finite element model is developed to investigate the drilling process of AISI 1045 steel, and particularly, the heat and wear on the drill faces. To model drill wear, a modified Usui flank wear rat...In this study, a 3D finite element model is developed to investigate the drilling process of AISI 1045 steel, and particularly, the heat and wear on the drill faces. To model drill wear, a modified Usui flank wear rate is used. Experiments are used for the verification of the simulated model and the evaluation of the surface rough- ness and built-up edge. A comparison of the predicted and experimental thrust forces and flank wear rates revealed that the predicted values had low errors and were in good agreement with the experimental values, which showed the utility of the developed model for further analysis. Accordingly, a heat analysis indicated that approximately half the generated heat in the cutting zone was conducted to the drill bit. Furthermore, material adhesion occurred in localized heat areas to a great extent, thus resulting in wear acceleration. A maximum flank wear rate of 0.026 1 mm/s was observed when the rotary speed and feed rate were at the lowest and highest levels, respectively. In the reverse cutting condition, a minimum flank wear rate of 0.016 8 mm/s was observed.展开更多
文摘Superalloys are grouped as hard-to-cut materials with relatively poor machinability.Tool wear is considered one of the main machinability attributes in machining superalloys.Although numerous works have been reported on factors governing tool life in machining superalloys,no study was found on the effect of nanoparticles stability on nanofluid performance and consequently resulted tool wear morphologies.In the present work,the nanoparticles were reinforced by means of improving the stability of the base fluid.To that accomplished,the surface active agent (surfactant) was added to the base cutting fluid as a reinforcing element.The effects of new lubricant on the tool wear morphology of A286 works parts were assessed.
文摘In this study, a 3D finite element model is developed to investigate the drilling process of AISI 1045 steel, and particularly, the heat and wear on the drill faces. To model drill wear, a modified Usui flank wear rate is used. Experiments are used for the verification of the simulated model and the evaluation of the surface rough- ness and built-up edge. A comparison of the predicted and experimental thrust forces and flank wear rates revealed that the predicted values had low errors and were in good agreement with the experimental values, which showed the utility of the developed model for further analysis. Accordingly, a heat analysis indicated that approximately half the generated heat in the cutting zone was conducted to the drill bit. Furthermore, material adhesion occurred in localized heat areas to a great extent, thus resulting in wear acceleration. A maximum flank wear rate of 0.026 1 mm/s was observed when the rotary speed and feed rate were at the lowest and highest levels, respectively. In the reverse cutting condition, a minimum flank wear rate of 0.016 8 mm/s was observed.