Pressure fluctuations in four bubbling fluidized beds having different bed sizes (three square cross-sections of 5, 10, and 15 cm in side length, and one rectangular cross-section of 2 × 10 cm2) were measured at ...Pressure fluctuations in four bubbling fluidized beds having different bed sizes (three square cross-sections of 5, 10, and 15 cm in side length, and one rectangular cross-section of 2 × 10 cm2) were measured at four axial positions (P1, P2, P3, and P4). Several characteristic indicators of the flow specifically of the pressure were calculated. In terms of these characteristic indicators, the effect of bed size on flow behavior was investigated. The results show that in the fully fluidized state, the pressure drop is slightly higher in smaller beds, but the pressure drops in the 10- and 15-cm beds are close. The 15-cm bed has the lowest pressure-fluctuation amplitude. The amplitudes at P1 and P2 in the lower part of the bed are very close for bed sizes below 10 cm, but the amplitude at P3 near the bed surface increases with decreasing bed size. No general trend was observed regarding the effect of bed size on skewness and kurtosis of the pressure for all four axial heights. For the average, standard deviation, skewness, and kurtosis of the pressure at P4, the values are close for the two small beds (2 × 10 and 5 × 5 cm2) and the two large beds (10 × 10 and 15 × 15 cm2), and hence the effect of bed size separates the beds into two groups. In the fully fluidized state, for P1, P2, and P3, the Kolmogorov entropy and the dominant frequency both increase with increasing bed size, but in the pseudo-2D bed both are between the values for the 5- and 10-cm beds.展开更多
利用VOF (volume of fluid)方法对静止水中气泡的自由上升过程进行了数值模拟,研究了初始直径不同的气泡自由上升时尾流的演变过程。研究发现气泡自由上升过程中其尾流有对称脱落、过渡态和周期性脱落三种运动状态,其中过渡态是介于对...利用VOF (volume of fluid)方法对静止水中气泡的自由上升过程进行了数值模拟,研究了初始直径不同的气泡自由上升时尾流的演变过程。研究发现气泡自由上升过程中其尾流有对称脱落、过渡态和周期性脱落三种运动状态,其中过渡态是介于对称脱落和周期性脱落之间的非稳定性脱落。气泡上升过程中其形状由球形转变为椭球形。尾流的对称脱落发生在气泡处于椭球形状且沿直线上升的过程;随着气泡的继续上升,当气泡的长轴与水平方向产生夹角时,尾流就会由对称脱落转变为过渡态(非稳定性脱落);最终,尾流会转变为周期性脱落。2.4~3.7 mm气泡尾流运动状态发生转变的临界Reynolds数不同,且随气泡初始直径的增大而增加。直径为2.4~3.7 mm气泡的尾流周期性脱落的频率为31~39 Hz,且频率随气泡直径的增大而减小。展开更多
为了在水声测试过程中提供尺寸小、成本低、应用灵活、低频和高目标强度的目标模拟器,文中根据水中气泡群具有强散射这一特性,提出了一种面向主动声呐试验的气泡群模拟器设计方法。基于等效介质理论(Effective Medium Theory,EMT)建立...为了在水声测试过程中提供尺寸小、成本低、应用灵活、低频和高目标强度的目标模拟器,文中根据水中气泡群具有强散射这一特性,提出了一种面向主动声呐试验的气泡群模拟器设计方法。基于等效介质理论(Effective Medium Theory,EMT)建立了气泡群声散射模型。首先将气泡群划分成立方体网格,然后应用图像处理方法获取立方体网格内气泡群的尺寸分布函数,接着使用EMT计算了每个立方体网格中的声反射系数和声波入射到立方体网格中产生的衰减,最后利用声波叠加原理计算了模拟器的反向散射目标强度。不同参数下的数值分析结果表明,气泡群尺寸分布函数呈伽马分布时,目标强度较高;目标强度随着尺寸分布区间减小和孔隙率增大而变大;共振频率随孔隙率增大而降低。结合气泡群孔隙率分布模型,文中给出了一组在低频时具有较高目标强度的小尺寸模拟器设计参数,可供相关设计者参考。展开更多
基金The authors are grateful for the financial support from the National Key R&D Program of China(No.2017YFB0603901)and the National Natural Science Foundation of China(No.21376134).
文摘Pressure fluctuations in four bubbling fluidized beds having different bed sizes (three square cross-sections of 5, 10, and 15 cm in side length, and one rectangular cross-section of 2 × 10 cm2) were measured at four axial positions (P1, P2, P3, and P4). Several characteristic indicators of the flow specifically of the pressure were calculated. In terms of these characteristic indicators, the effect of bed size on flow behavior was investigated. The results show that in the fully fluidized state, the pressure drop is slightly higher in smaller beds, but the pressure drops in the 10- and 15-cm beds are close. The 15-cm bed has the lowest pressure-fluctuation amplitude. The amplitudes at P1 and P2 in the lower part of the bed are very close for bed sizes below 10 cm, but the amplitude at P3 near the bed surface increases with decreasing bed size. No general trend was observed regarding the effect of bed size on skewness and kurtosis of the pressure for all four axial heights. For the average, standard deviation, skewness, and kurtosis of the pressure at P4, the values are close for the two small beds (2 × 10 and 5 × 5 cm2) and the two large beds (10 × 10 and 15 × 15 cm2), and hence the effect of bed size separates the beds into two groups. In the fully fluidized state, for P1, P2, and P3, the Kolmogorov entropy and the dominant frequency both increase with increasing bed size, but in the pseudo-2D bed both are between the values for the 5- and 10-cm beds.
文摘为了在水声测试过程中提供尺寸小、成本低、应用灵活、低频和高目标强度的目标模拟器,文中根据水中气泡群具有强散射这一特性,提出了一种面向主动声呐试验的气泡群模拟器设计方法。基于等效介质理论(Effective Medium Theory,EMT)建立了气泡群声散射模型。首先将气泡群划分成立方体网格,然后应用图像处理方法获取立方体网格内气泡群的尺寸分布函数,接着使用EMT计算了每个立方体网格中的声反射系数和声波入射到立方体网格中产生的衰减,最后利用声波叠加原理计算了模拟器的反向散射目标强度。不同参数下的数值分析结果表明,气泡群尺寸分布函数呈伽马分布时,目标强度较高;目标强度随着尺寸分布区间减小和孔隙率增大而变大;共振频率随孔隙率增大而降低。结合气泡群孔隙率分布模型,文中给出了一组在低频时具有较高目标强度的小尺寸模拟器设计参数,可供相关设计者参考。