For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely t...For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data.展开更多
Deformation experiments of Carrara marble were conducted under increasing temperatures (temperatures 300℃ - 550℃, confining pressure 0. 5Mpa, strain - rate 5 × 10- 6 s-1 ). The experiments reveal that calcite r...Deformation experiments of Carrara marble were conducted under increasing temperatures (temperatures 300℃ - 550℃, confining pressure 0. 5Mpa, strain - rate 5 × 10- 6 s-1 ). The experiments reveal that calcite rocks show different deformation behaviors and corresponding microstructural characteristics under different temperatures. By analyzing microstructural characteristics, preferred grain shape orientation variation of the primary rocks and deformed specimen, the deformation features of Carrara marble are summarized: twinning, fracturing dominates deformation of the rocks at temperatures between 300℃ and 450℃; dynamic recrystallization occurs in the temperature range of 450- 550℃; the brittle to crystalline plasticity transition deformation is observed at around 450℃, twinning and crystal - plastic deformation become dominant with further increasing temperature.展开更多
We have carried out a systematic experimental study on semi-brittle and plastic deformation of fine-grained Panzhihua gabbro under dry condition with temperature range of 700–1100 °C, confining pressure of 450–...We have carried out a systematic experimental study on semi-brittle and plastic deformation of fine-grained Panzhihua gabbro under dry condition with temperature range of 700–1100 °C, confining pressure of 450–500 MPa, and strain rate of 1 × 10-4-3.1 × 10-6 s-1, using a triaxial testing system with a Griggs type solid medium pressure vessel. In terms of the parameters in the flow law and microstructure after deformation, the rate-dependent deformation can be categorized into three modes: (i) In temperature range of 700–800°C, the deformation is accommodated by semi-brittle flow, with activation energy Q = 612 ± 12 kJ/mol, and stress exponent n = 14.6. The deformation in microscopic scale corresponds to the dislocation glide accompanied with microfracturing. (ii) In temperature range of 90–950°C, the predominant deformation mechanisms in this phase are mechanical twinning and dislocation glide, with activation energy Q =720 ± 61 kJ/mol, and stress exponent n = 6.4. (iii) In temperature range of 1000–1150°C, the major deformation mechanisms are dislocation glide and dislocation climb with minor processes of partial melting, with activation energy Q = 699 ± 55 kJ/mol and stress exponent n = 4.1. The microstructure and deformation mechanism of our experiments are comparable to the results of clinopyroxene and diabase as observed in previous studies. The flow stress of a mafic lower crust is calculated based on the rheological parameters of dry fine-grained gabbro, which implies that a lower curst with mafic granulite may be brittle, and it is possible to fracture and produce frictional slips. This may be an important implication for earthquake nucleation in the lower crust.展开更多
基金supported by China Scholarship Council and GRC/MIRARCO-Mining Innovation of Laurentian University, Canada
文摘For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data.
基金National Natural Science Foundation of China(49872071)
文摘Deformation experiments of Carrara marble were conducted under increasing temperatures (temperatures 300℃ - 550℃, confining pressure 0. 5Mpa, strain - rate 5 × 10- 6 s-1 ). The experiments reveal that calcite rocks show different deformation behaviors and corresponding microstructural characteristics under different temperatures. By analyzing microstructural characteristics, preferred grain shape orientation variation of the primary rocks and deformed specimen, the deformation features of Carrara marble are summarized: twinning, fracturing dominates deformation of the rocks at temperatures between 300℃ and 450℃; dynamic recrystallization occurs in the temperature range of 450- 550℃; the brittle to crystalline plasticity transition deformation is observed at around 450℃, twinning and crystal - plastic deformation become dominant with further increasing temperature.
基金State Key Basic Science Research Project(Grant No.G1998040704) a project of the Laboratory of Tectonophysics China Seismological Bueanu
文摘We have carried out a systematic experimental study on semi-brittle and plastic deformation of fine-grained Panzhihua gabbro under dry condition with temperature range of 700–1100 °C, confining pressure of 450–500 MPa, and strain rate of 1 × 10-4-3.1 × 10-6 s-1, using a triaxial testing system with a Griggs type solid medium pressure vessel. In terms of the parameters in the flow law and microstructure after deformation, the rate-dependent deformation can be categorized into three modes: (i) In temperature range of 700–800°C, the deformation is accommodated by semi-brittle flow, with activation energy Q = 612 ± 12 kJ/mol, and stress exponent n = 14.6. The deformation in microscopic scale corresponds to the dislocation glide accompanied with microfracturing. (ii) In temperature range of 90–950°C, the predominant deformation mechanisms in this phase are mechanical twinning and dislocation glide, with activation energy Q =720 ± 61 kJ/mol, and stress exponent n = 6.4. (iii) In temperature range of 1000–1150°C, the major deformation mechanisms are dislocation glide and dislocation climb with minor processes of partial melting, with activation energy Q = 699 ± 55 kJ/mol and stress exponent n = 4.1. The microstructure and deformation mechanism of our experiments are comparable to the results of clinopyroxene and diabase as observed in previous studies. The flow stress of a mafic lower crust is calculated based on the rheological parameters of dry fine-grained gabbro, which implies that a lower curst with mafic granulite may be brittle, and it is possible to fracture and produce frictional slips. This may be an important implication for earthquake nucleation in the lower crust.