Backgrounds Time-lapse live cell imaging of a growing cell population is routine in many biological investigations.A major challenge in imaging analysis is accurate segmentation,a process to define the boundaries of c...Backgrounds Time-lapse live cell imaging of a growing cell population is routine in many biological investigations.A major challenge in imaging analysis is accurate segmentation,a process to define the boundaries of cells based on raw image data.Current segmentation methods relying on single boundary features have problems in robustness when dealing with inhomogeneous foci which invariably happens in cell population imaging.Methods:Combined with a multi-layer training set strategy,we developed a neural-network-based algorithm—Cellbow.Results'Cellbow can achieve accurate and robust segmentation of cells in broad and general settings.It can also facilitate long-term tracking of cell growth and division.To facilitate the application of Cellbow,we provide a website on which one can online test the software,as well as an I mage J plugin for the user to visualize the performance before software installation.Conclusions Cellbow is customizable and generalizable.It is broadly applicable to segmenting fluorescent images of diverse cell types with no further training needed.For bright-field images,only a small set of sample images of the specific cell type from the user may be needed for training.展开更多
Review of X-ray dark-field imaging under development is presented. Its goal is its application to clinical diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tiss...Review of X-ray dark-field imaging under development is presented. Its goal is its application to clinical diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tissues in detail one needs high contrast and high spatial resolution say ~50 μm. This X-ray optics comprises a Bragg asymmetric monochro-collimator and a Bragg case or a Laue case filter with capability of analyzing angle in a parallel position. Their diffraction index is 4,4,0 and the X-ray energy 35 keV (λ= 0.0354 nm). The filter has 0.6 mm thickness in the Bragg case or 1.075 mm or 2.15 mm thickness in the Laue case. Under this condition only the refracted X-rays from object can transmit through the filter while the beam that may receive absorption and/or phase change will not. Soft tissues at human joints thus taken show high contrast images so that the DFI is promising for clinical diagnosis. Preliminary X-ray absorption images of another clinical candidates of ear bones are also shown.展开更多
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H...Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.展开更多
基金This work was supported by the Ministry of Science and Technology of China(2015CB910300)the National Key Research and Development Program of China(2018YFA0900700)the National Natural Science Foundation of China(NSFC31700733).Part of the analysis was performed on the High Performance Computing Platform of the Center for Life Science.
文摘Backgrounds Time-lapse live cell imaging of a growing cell population is routine in many biological investigations.A major challenge in imaging analysis is accurate segmentation,a process to define the boundaries of cells based on raw image data.Current segmentation methods relying on single boundary features have problems in robustness when dealing with inhomogeneous foci which invariably happens in cell population imaging.Methods:Combined with a multi-layer training set strategy,we developed a neural-network-based algorithm—Cellbow.Results'Cellbow can achieve accurate and robust segmentation of cells in broad and general settings.It can also facilitate long-term tracking of cell growth and division.To facilitate the application of Cellbow,we provide a website on which one can online test the software,as well as an I mage J plugin for the user to visualize the performance before software installation.Conclusions Cellbow is customizable and generalizable.It is broadly applicable to segmenting fluorescent images of diverse cell types with no further training needed.For bright-field images,only a small set of sample images of the specific cell type from the user may be needed for training.
文摘Review of X-ray dark-field imaging under development is presented. Its goal is its application to clinical diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tissues in detail one needs high contrast and high spatial resolution say ~50 μm. This X-ray optics comprises a Bragg asymmetric monochro-collimator and a Bragg case or a Laue case filter with capability of analyzing angle in a parallel position. Their diffraction index is 4,4,0 and the X-ray energy 35 keV (λ= 0.0354 nm). The filter has 0.6 mm thickness in the Bragg case or 1.075 mm or 2.15 mm thickness in the Laue case. Under this condition only the refracted X-rays from object can transmit through the filter while the beam that may receive absorption and/or phase change will not. Soft tissues at human joints thus taken show high contrast images so that the DFI is promising for clinical diagnosis. Preliminary X-ray absorption images of another clinical candidates of ear bones are also shown.
基金supported by the National Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212,51421002,and 51672307)
文摘Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.