期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于无监督学习的专业领域分词歧义消解方法
被引量:
7
1
作者
修驰
宋柔
《计算机应用》
CSCD
北大核心
2013年第3期780-783,共4页
中文自然语言处理中专业领域分词的难度远远高于通用领域。特别是在专业领域的分词歧义方面,一直没有找到有效的解决方法。针对该问题提出基于无监督学习的专业领域分词歧义消解方法。以测试语料自身的字符串频次信息、互信息、边界熵...
中文自然语言处理中专业领域分词的难度远远高于通用领域。特别是在专业领域的分词歧义方面,一直没有找到有效的解决方法。针对该问题提出基于无监督学习的专业领域分词歧义消解方法。以测试语料自身的字符串频次信息、互信息、边界熵信息为分词歧义的评价标准,独立、组合地使用这三种信息解决分词歧义问题。实验结果显示该方法可以有效消解专业领域的分词歧义,并明显提高分词效果。
展开更多
关键词
专业领域分词
分词歧义
字符串频次
互信息
边界熵
下载PDF
职称材料
题名
基于无监督学习的专业领域分词歧义消解方法
被引量:
7
1
作者
修驰
宋柔
机构
北京工业大学计算机学院
北京语言大学信息科学学院
出处
《计算机应用》
CSCD
北大核心
2013年第3期780-783,共4页
基金
国家自然科学基金资助项目(60872121)
文摘
中文自然语言处理中专业领域分词的难度远远高于通用领域。特别是在专业领域的分词歧义方面,一直没有找到有效的解决方法。针对该问题提出基于无监督学习的专业领域分词歧义消解方法。以测试语料自身的字符串频次信息、互信息、边界熵信息为分词歧义的评价标准,独立、组合地使用这三种信息解决分词歧义问题。实验结果显示该方法可以有效消解专业领域的分词歧义,并明显提高分词效果。
关键词
专业领域分词
分词歧义
字符串频次
互信息
边界熵
Keywords
domain word segmentation
segmentation ambiguity
string frequency
mutual information
boundaryentropy
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于无监督学习的专业领域分词歧义消解方法
修驰
宋柔
《计算机应用》
CSCD
北大核心
2013
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部