This paper presents a 2.5D scattering of incident plane SV waves by a canyon in a layered half-space by using the indirect boundary element method (IBEM). A free field response analysis is performed to provide the d...This paper presents a 2.5D scattering of incident plane SV waves by a canyon in a layered half-space by using the indirect boundary element method (IBEM). A free field response analysis is performed to provide the displacements and stresses on the boundary of the canyon where fictitious uniform moving loads are applied to calculate the Green's fi.mctions for the displacements and stresses. The amplitudes of the loads are determined by the boundary conditions. The free field displacements are added to the fictitious uniform moving loads induced displacements and the total response is obtained. Numerical calculations are performed for a canyon with homogenous and in one layer over bedrock. The effects of the thickness and stiffness of the layer on the amplification are studied and discussed.展开更多
Abstract: The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane ...Abstract: The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.展开更多
The collision of ships in narrow waterway may occur for a variety of reasons.The hydrodynamic forces between two ships change the maneuvering characteristics of ships greatly.So based on the boundary element method, t...The collision of ships in narrow waterway may occur for a variety of reasons.The hydrodynamic forces between two ships change the maneuvering characteristics of ships greatly.So based on the boundary element method, this paper proposes a calculation method for hydrodynamicinteraction forces between ships under meeting and passing conditions in narrow waterway. Theresults from this method are compared with the existing results obtained from other theoreticalapproaches, and they are in good agreement.展开更多
The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be s...The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be solved by the direct stiffness method, and the scattering wave response is calculated by Green’s functions of distributed loads acting on inclined lines in a layered half-space. The method is verified by comparing its results with literature and numerical analyses are performed by taking the amplification of incident plane P-waves by an alluvial valley in one soil layer resting on bedrock as an example. The results show that there exist distinct differences between the wave amplification by an alluvial valley embedded in layered half-space and that in homogeneous half-space and there is interaction between the valley and the soil layer. The amplitudes are relatively large when incident frequencies are close to the soil layer’s resonant frequencies.展开更多
The weighted residuals method was used for obtaining the boundary integral representation of the velocity of the three-dimensional inviscid irrotational flow. It is shown that velocity in an arbitrary point of domain ...The weighted residuals method was used for obtaining the boundary integral representation of the velocity of the three-dimensional inviscid irrotational flow. It is shown that velocity in an arbitrary point of domain can be expressed through its values on the boundary. Boundary integral equations of the second kind for solving boundary-valued problems of the first and second kinds are developed. The result has been also generalised to the case of solenoidal vector fields with potential vorticity. It is shown that the resulting integral equations are Fredholm integral equations of the second kind and allow effective numerical solving of corresponding boundary-valued problems. Examples of numerical solutions for a sphere and an ellipsoid are given for demonstration of efficiency of the offered method.展开更多
基金National Natural Science Foundation of China Under Grant No.50908156 and 50978183Tianjin Natural Science Foundation Under Grant No. 07JCZDJC10100
文摘This paper presents a 2.5D scattering of incident plane SV waves by a canyon in a layered half-space by using the indirect boundary element method (IBEM). A free field response analysis is performed to provide the displacements and stresses on the boundary of the canyon where fictitious uniform moving loads are applied to calculate the Green's fi.mctions for the displacements and stresses. The amplitudes of the loads are determined by the boundary conditions. The free field displacements are added to the fictitious uniform moving loads induced displacements and the total response is obtained. Numerical calculations are performed for a canyon with homogenous and in one layer over bedrock. The effects of the thickness and stiffness of the layer on the amplification are studied and discussed.
基金National Natural Science Foundation of China under Grant Nos.51578373 and 51578372
文摘Abstract: The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.
文摘The collision of ships in narrow waterway may occur for a variety of reasons.The hydrodynamic forces between two ships change the maneuvering characteristics of ships greatly.So based on the boundary element method, this paper proposes a calculation method for hydrodynamicinteraction forces between ships under meeting and passing conditions in narrow waterway. Theresults from this method are compared with the existing results obtained from other theoreticalapproaches, and they are in good agreement.
基金Supported by National Natural Science Foundation of China (No. 50978156 and No. 50908183)
文摘The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be solved by the direct stiffness method, and the scattering wave response is calculated by Green’s functions of distributed loads acting on inclined lines in a layered half-space. The method is verified by comparing its results with literature and numerical analyses are performed by taking the amplification of incident plane P-waves by an alluvial valley in one soil layer resting on bedrock as an example. The results show that there exist distinct differences between the wave amplification by an alluvial valley embedded in layered half-space and that in homogeneous half-space and there is interaction between the valley and the soil layer. The amplitudes are relatively large when incident frequencies are close to the soil layer’s resonant frequencies.
文摘The weighted residuals method was used for obtaining the boundary integral representation of the velocity of the three-dimensional inviscid irrotational flow. It is shown that velocity in an arbitrary point of domain can be expressed through its values on the boundary. Boundary integral equations of the second kind for solving boundary-valued problems of the first and second kinds are developed. The result has been also generalised to the case of solenoidal vector fields with potential vorticity. It is shown that the resulting integral equations are Fredholm integral equations of the second kind and allow effective numerical solving of corresponding boundary-valued problems. Examples of numerical solutions for a sphere and an ellipsoid are given for demonstration of efficiency of the offered method.