During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between ...During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between the borehole and gob is too large, the quantity of gas drained from the protected layer decreases substantially. To solve this problem, a mathematical model for extracting pressure-relieved gas from a protected coal seam using a surface borehole was established, based on the radial gas flow theory and law of conservation of energy. The key factors influencing the quantity of gas and the drainage flow network using a surface borehole were presented. The results show that the quantity of pressure-relieved gas drained from the protected layer can be significantly increased by increasing the flow resistance of the borehole bottom. Application of this method in the Wulan Coal Mine of the Shenhua Group significantly increased the flow of pure gas and the gas concentration (by factors of 1.8 and 2.0, respectively), thus demonstrating the remarkable effects of this method.展开更多
Filling methods in the mining industry can maximize the recovery of mineral resources and protect the underground and surface environments.In recent years,such methods have been widely used in metal mines where pipeli...Filling methods in the mining industry can maximize the recovery of mineral resources and protect the underground and surface environments.In recent years,such methods have been widely used in metal mines where pipeline transportation typically plays a decisive role in the safety and stability of the entirefilling system.Because thefilling slurry contains a large percentage of solid coarse particles,the involved pipeline is typically eroded and often damaged during such a process.A possible solution is the so-called nesting repair technology.In the present study,nesting a 127 mm outer diameter pipeline in 151 mm inner diameter borehole is considered to meet the repair objective.First,by using the rheological theory,the pipeline transmission resistance and self-flow conveying range are calculated under different working conditions.It is shown that the pipeline transmission resistance is larger when the inner diameter of casing is 80 mm,and the limitflow rate of vertical pipeline self-flow is 120 m^(3)/h;moreover,when the pipeline diameter is 100 mm and theflow rate is 140 m^(3)/h,the self-flow conveying can be satisfied in most of the underground−455 m stage.Accordingly,a plan is presented for the nesting repair strategy,based on the installation of a drill bit under the casing and lowering the casing into the borehole as if it were a drill pipe.Finally,the outcomes of such a strategy are verified.Thefillingflow rate range using the new pipelines is found to be in the range from 188.60 to 224.39 m^(3)/h,and its averagefillingflow rate reaches 209.83 m^(3)/h when conveying 2319.6 m long-distance quarry.展开更多
Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configurat...Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.展开更多
The borehole and total internal thermal resistance are both significant parameters in evaluating the thermal performance of the ground source heat pump.This study aimed to obtain the accurate correlation of the 3D bor...The borehole and total internal thermal resistance are both significant parameters in evaluating the thermal performance of the ground source heat pump.This study aimed to obtain the accurate correlation of the 3D borehole and total internal thermal resistance(R_(b,3D)and R_(a,3D))and analyze the impacts of parameters on the R_(b,3D)and R_(a,3D).Firstly,eight parameters affecting the R_(b,3D)and R_(a,3D),including the borehole diameter,pipe diameter,pipe-pipe distance,borehole depth,soil thermal conductivity,grout thermal conductivity,pipe thermal conductivity,and fluid velocity inside the pipe,were considered and an L-54 design matrix was generated.Then,the 3D numerical model,coupling with the four-resistance model,was proposed to calculate R_(b,3D)and R_(a,3D)for each case.After that,the response surface methodology was employed to obtain and verify the correlation of R_(b,3D)and R_(a,3D),which were compared with the existing resistance calculation methods.Lastly,analysis of variance was carried out to reveal parameters that have statistically significant impacts on the R_(b,3D)and R_(a,3D).Results show that the rationality and accuracy of the correlation of R_(b,3D)and R_(a,3D)can be verified by the determination coefficient and P value of regression model,as well as the P value of lack-of-fit.The existing resistance calculation methods are more or less inaccurate and the discrepancies in some cases can be up to 86.74%and 111.35%for the borehole and total internal thermal resistance.The pipe and grout thermal conductivity,pipe and borehole diameter,and the pipe-pipe distance can be seen as the significant contributory factors to the variation of R_(b,3D)and R_(a,3D).展开更多
An analytical model was built to predict the thermal resistance of a vertical double U-tube ground-coupled heat pump that operates under steady-state conditions.It included a geometry obstruction factor for heat trans...An analytical model was built to predict the thermal resistance of a vertical double U-tube ground-coupled heat pump that operates under steady-state conditions.It included a geometry obstruction factor for heat transfer throughout the backfill medium due to the presence of the second loop.The verification of the model was achieved by the implementation of five different borehole configurations and a comparison with other correlations in the available literature.The model considered a U-tube spacing range between(2)and(4)times the U-tube outside diameter producing a geometry configuration factor range of(0.29-0.6).The results of the model were utilized for the assessment of the DX ground heat exchanger coupled heat pump system.For similar geometrical configurations,the borehole thermal resistance experienced a decrease as the geometry factor increased.The single U-tube borehole thermal resistance was higher than that of the double U-tube heat exchanger by(10-27)%for the examined geometry configurations.The borehole thermal resistance at tube spacing of twice the tube diameter was higher than the predicted value at the triple diameter and fell in the range of(18-34)%.展开更多
The single well geothermal heating(SWGH)technology has attracted extensive attention.To enhance heat extraction from SWGH,a mathematical model describing heat transfer is set up,and the key influence factor and heat t...The single well geothermal heating(SWGH)technology has attracted extensive attention.To enhance heat extraction from SWGH,a mathematical model describing heat transfer is set up,and the key influence factor and heat transfer enhancement method are discussed by thermal resistance analysis.The numerical results show that the thermal resistance of rock is far greater than that of well wall and fluid.So,reducing rock thermal resistance is the most effective method for enhancing the heat extraction power.For geothermal well planning to drill:rock thermal resistance can be reduced by increasing well diameter and rock thermal conductivity;the temperature difference between liquid and rock can be raised by increasing well depth.For already existing geothermal well:an insulator with thermal conductivity of 0.2 W/(mK)is sufficient to preserve fluid enthalpy;a decrease in injection water temperature causes the increase of heat extraction power from geothermal well and heat output from heat pump simultaneously;increasing injection velocity causes the increase of pump power consumption and heat extraction power from geothermal well as well as net heat output between them.The entrepreneurs may refer to the above data in actual project.Furthermore,filling composite materials with high thermal conductivity into leakage formation is proposed in order to reduce the thermal resistance of rocks.展开更多
文摘During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between the borehole and gob is too large, the quantity of gas drained from the protected layer decreases substantially. To solve this problem, a mathematical model for extracting pressure-relieved gas from a protected coal seam using a surface borehole was established, based on the radial gas flow theory and law of conservation of energy. The key factors influencing the quantity of gas and the drainage flow network using a surface borehole were presented. The results show that the quantity of pressure-relieved gas drained from the protected layer can be significantly increased by increasing the flow resistance of the borehole bottom. Application of this method in the Wulan Coal Mine of the Shenhua Group significantly increased the flow of pure gas and the gas concentration (by factors of 1.8 and 2.0, respectively), thus demonstrating the remarkable effects of this method.
基金supported by the State Key Research Development Program of China(2018YFC0603705)the Fundamental Research Funds for the Central Universities(FRF-IDRYGD22-004).
文摘Filling methods in the mining industry can maximize the recovery of mineral resources and protect the underground and surface environments.In recent years,such methods have been widely used in metal mines where pipeline transportation typically plays a decisive role in the safety and stability of the entirefilling system.Because thefilling slurry contains a large percentage of solid coarse particles,the involved pipeline is typically eroded and often damaged during such a process.A possible solution is the so-called nesting repair technology.In the present study,nesting a 127 mm outer diameter pipeline in 151 mm inner diameter borehole is considered to meet the repair objective.First,by using the rheological theory,the pipeline transmission resistance and self-flow conveying range are calculated under different working conditions.It is shown that the pipeline transmission resistance is larger when the inner diameter of casing is 80 mm,and the limitflow rate of vertical pipeline self-flow is 120 m^(3)/h;moreover,when the pipeline diameter is 100 mm and theflow rate is 140 m^(3)/h,the self-flow conveying can be satisfied in most of the underground−455 m stage.Accordingly,a plan is presented for the nesting repair strategy,based on the installation of a drill bit under the casing and lowering the casing into the borehole as if it were a drill pipe.Finally,the outcomes of such a strategy are verified.Thefillingflow rate range using the new pipelines is found to be in the range from 188.60 to 224.39 m^(3)/h,and its averagefillingflow rate reaches 209.83 m^(3)/h when conveying 2319.6 m long-distance quarry.
基金Project financially supported by the Second Stage of Brain Korea 21 Projects and Changwon National University,Korea
文摘Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.
基金This work was supported by the National Natural Science Foundation of China(No.51708551).
文摘The borehole and total internal thermal resistance are both significant parameters in evaluating the thermal performance of the ground source heat pump.This study aimed to obtain the accurate correlation of the 3D borehole and total internal thermal resistance(R_(b,3D)and R_(a,3D))and analyze the impacts of parameters on the R_(b,3D)and R_(a,3D).Firstly,eight parameters affecting the R_(b,3D)and R_(a,3D),including the borehole diameter,pipe diameter,pipe-pipe distance,borehole depth,soil thermal conductivity,grout thermal conductivity,pipe thermal conductivity,and fluid velocity inside the pipe,were considered and an L-54 design matrix was generated.Then,the 3D numerical model,coupling with the four-resistance model,was proposed to calculate R_(b,3D)and R_(a,3D)for each case.After that,the response surface methodology was employed to obtain and verify the correlation of R_(b,3D)and R_(a,3D),which were compared with the existing resistance calculation methods.Lastly,analysis of variance was carried out to reveal parameters that have statistically significant impacts on the R_(b,3D)and R_(a,3D).Results show that the rationality and accuracy of the correlation of R_(b,3D)and R_(a,3D)can be verified by the determination coefficient and P value of regression model,as well as the P value of lack-of-fit.The existing resistance calculation methods are more or less inaccurate and the discrepancies in some cases can be up to 86.74%and 111.35%for the borehole and total internal thermal resistance.The pipe and grout thermal conductivity,pipe and borehole diameter,and the pipe-pipe distance can be seen as the significant contributory factors to the variation of R_(b,3D)and R_(a,3D).
文摘An analytical model was built to predict the thermal resistance of a vertical double U-tube ground-coupled heat pump that operates under steady-state conditions.It included a geometry obstruction factor for heat transfer throughout the backfill medium due to the presence of the second loop.The verification of the model was achieved by the implementation of five different borehole configurations and a comparison with other correlations in the available literature.The model considered a U-tube spacing range between(2)and(4)times the U-tube outside diameter producing a geometry configuration factor range of(0.29-0.6).The results of the model were utilized for the assessment of the DX ground heat exchanger coupled heat pump system.For similar geometrical configurations,the borehole thermal resistance experienced a decrease as the geometry factor increased.The single U-tube borehole thermal resistance was higher than that of the double U-tube heat exchanger by(10-27)%for the examined geometry configurations.The borehole thermal resistance at tube spacing of twice the tube diameter was higher than the predicted value at the triple diameter and fell in the range of(18-34)%.
基金National Natural Science Foundation of China(No.41972314).
文摘The single well geothermal heating(SWGH)technology has attracted extensive attention.To enhance heat extraction from SWGH,a mathematical model describing heat transfer is set up,and the key influence factor and heat transfer enhancement method are discussed by thermal resistance analysis.The numerical results show that the thermal resistance of rock is far greater than that of well wall and fluid.So,reducing rock thermal resistance is the most effective method for enhancing the heat extraction power.For geothermal well planning to drill:rock thermal resistance can be reduced by increasing well diameter and rock thermal conductivity;the temperature difference between liquid and rock can be raised by increasing well depth.For already existing geothermal well:an insulator with thermal conductivity of 0.2 W/(mK)is sufficient to preserve fluid enthalpy;a decrease in injection water temperature causes the increase of heat extraction power from geothermal well and heat output from heat pump simultaneously;increasing injection velocity causes the increase of pump power consumption and heat extraction power from geothermal well as well as net heat output between them.The entrepreneurs may refer to the above data in actual project.Furthermore,filling composite materials with high thermal conductivity into leakage formation is proposed in order to reduce the thermal resistance of rocks.