Mining induced pressures are strong and overburden failure areas are large in top coal caving longwall mining, which constrains high production and safety mining. By employing the combination of the full view borehole...Mining induced pressures are strong and overburden failure areas are large in top coal caving longwall mining, which constrains high production and safety mining. By employing the combination of the full view borehole photography technique and the seismic CT scanner technique, the deformation and failure of overlying strata of fully mechanized caving face in shallow coal seam were studied and the failure development of overburden was determined. Results show that the full view borehole photography can reveal the characteristics of strata, and the seismic CT scanner can reflect the characteristics of strata between the boreholes. The combined measurement technique can effectively determine the height of fractured and caved zones. The top end of the caved zone in Yangwangou coal mine employing the top coal caving longwall mining was at the depth of 171 m and fractured zone was at the depth of 106-110 m. The results provide a theoretic foundation for controlling the overburden strata in the shallow buried top coal caving panel.展开更多
The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study ther...The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study therefore seeks to investigate the relationship between borehole depth and groundwater quality across the granitoid aquifers within the Birimian Supergroup in the Ashanti Region. Physicochemical analysis records of groundwater quality data were collected from 23 boreholes of public and private institutions in the Ashanti Region of Ghana, and the parametric values of iron, fluoride, total hardness, pH, nitrate, and nitrite were used to study the groundwater quality-depth relationship. The results showed that the depth-to-groundwater quality indicated a marginal increase in water quality in the range of 30 to 50 m, which is mathematically represented by the low-value correlation coefficient (r<sup>2</sup> = 0.026). A relatively significant increase occurs in the depth range of 50 to 80 m, which is given by a correlation coefficient of r<sup>2</sup> = 0.298. The mean percent parameter compatibility was 74%, 82%, 89%, and 97% at 50, 60, 70, and 80 m depths, respectively. The variations in groundwater quality per depth ratio ranged from 1.48, 1.37, 1.27, and 1.21 for 50, 60, 70, and 80 m depth, respectively. The recommended minimum borehole depth for excellent groundwater quality is suggested with a compatibility per meter depth ratio of 1.37. This results in a range between 50 and 70 m as the most desirable drilling depth for excellent groundwater quality within the granitoids of the Birimian Supergroup of the Ashanti Region in Ghana.展开更多
基金provided by the National Natural Science Foundation of China(No.51674132)the State Key Research Development Program of China(No.2016YFC0801407-2)+3 种基金the Research Fund of The State Key Laboratory of Coal Resources and Safe Mining,CUMT(No.SKLCRSM15KF04)Natural Science Foundation of Liaoning Province(No.2015020614)Liaoning BaiQianWan Talents Program(No.201575)the Research Fund of State and Local Joint Engineering Laboratory for Gas Drainage & Ground Control of Deep Mines(Henan Polytechnic University)(No.G201602)
文摘Mining induced pressures are strong and overburden failure areas are large in top coal caving longwall mining, which constrains high production and safety mining. By employing the combination of the full view borehole photography technique and the seismic CT scanner technique, the deformation and failure of overlying strata of fully mechanized caving face in shallow coal seam were studied and the failure development of overburden was determined. Results show that the full view borehole photography can reveal the characteristics of strata, and the seismic CT scanner can reflect the characteristics of strata between the boreholes. The combined measurement technique can effectively determine the height of fractured and caved zones. The top end of the caved zone in Yangwangou coal mine employing the top coal caving longwall mining was at the depth of 171 m and fractured zone was at the depth of 106-110 m. The results provide a theoretic foundation for controlling the overburden strata in the shallow buried top coal caving panel.
文摘The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study therefore seeks to investigate the relationship between borehole depth and groundwater quality across the granitoid aquifers within the Birimian Supergroup in the Ashanti Region. Physicochemical analysis records of groundwater quality data were collected from 23 boreholes of public and private institutions in the Ashanti Region of Ghana, and the parametric values of iron, fluoride, total hardness, pH, nitrate, and nitrite were used to study the groundwater quality-depth relationship. The results showed that the depth-to-groundwater quality indicated a marginal increase in water quality in the range of 30 to 50 m, which is mathematically represented by the low-value correlation coefficient (r<sup>2</sup> = 0.026). A relatively significant increase occurs in the depth range of 50 to 80 m, which is given by a correlation coefficient of r<sup>2</sup> = 0.298. The mean percent parameter compatibility was 74%, 82%, 89%, and 97% at 50, 60, 70, and 80 m depths, respectively. The variations in groundwater quality per depth ratio ranged from 1.48, 1.37, 1.27, and 1.21 for 50, 60, 70, and 80 m depth, respectively. The recommended minimum borehole depth for excellent groundwater quality is suggested with a compatibility per meter depth ratio of 1.37. This results in a range between 50 and 70 m as the most desirable drilling depth for excellent groundwater quality within the granitoids of the Birimian Supergroup of the Ashanti Region in Ghana.