This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets (DBN) is proposed to conduct intrusion detec...This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets (DBN) is proposed to conduct intrusion detection,and the principles regarding DBN are discussed.The DBN is composed of a multiple unsupervised restricted Boltzmann machine (RBM) and a supervised back propagation (BP)network.First,the DBN in the proposed model is pre-trained in a fast and greedy way,and each RBM is trained by the contrastive divergence algorithm.Secondly,the whole network is fine-tuned by the supervised BP algorithm,which is employed for classifying the low-dimensional features of the intrusion data generated by the last RBM layer simultaneously.The experimental results on the KDD CUP 1999 dataset demonstrate that the DBN using the RBM network with three or more layers outperforms the self-organizing maps (SOM)and neural network (NN)in intrusion classification.Therefore,the DBN is an efficient approach for intrusion detection in high-dimensional space.展开更多
Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical per...Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical performance during simulation;however,the value method of the relaxation parameters needs to be specified.Therefore,in this study,a random forest(RF)model is used to discriminate the importance of different relaxation parameters to the convergence,and a support vector machine(SVM)is used to explore the decision boundary of the convergent samples in each dimensional model.The results show that the convergence of the samples is consistent with the sign of the decision number,and two types of the numerical deviations appear,i.e.,the phase mushy zone and the non-physical heat transfer.The relaxation parameters chosen on the decision boundary can further suppress the numerical bias and improve numerical accuracy.展开更多
Online monitoring and diagnosis of production processes face great challenges due to the nonlinearity and multivariate of complex industrial processes.Traditional process monitoring methods employ kernel function or m...Online monitoring and diagnosis of production processes face great challenges due to the nonlinearity and multivariate of complex industrial processes.Traditional process monitoring methods employ kernel function or multilayer neural networks to solve the nonlinear mapping problem of data.However,the above methods increase the model complexity and are not interpretable,leading to difficulties in subsequent fault recognition/diagnosis/location.A process monitoring and diagnosis method based on the free energy of Gaussian-Bernoulli restricted Boltzmann machine(GBRBM-FE)was proposed.Firstly,a GBRBM network was established to make the probability distribution of the reconstructed data as close as possible to the probability distribution of the raw data.On this basis,the weights and biases in GBRBM network were used to construct F statistics,which represents the free energy of the sample.The smaller the energy of the sample is,the more normal the sample is.Therefore,F statistics can be used to monitor the production process.To diagnose fault variables,the F statistic for each sample was decomposed to obtain the Fv statistic for each variable.By analyzing the deviation degree between the corresponding variables of abnormal samples and normal samples,the cause of process abnormalities can be accurately located.The application of converter steelmaking process demonstrates that the proposed method outperforms the traditional methods,in terms of fault monitoring and diagnosis performance.展开更多
A biased sampling algorithm for the restricted Boltzmann machine(RBM) is proposed, which allows generating configurations with a conserved quantity. To validate the method, a study of the short-range order in binary a...A biased sampling algorithm for the restricted Boltzmann machine(RBM) is proposed, which allows generating configurations with a conserved quantity. To validate the method, a study of the short-range order in binary alloys with positive and negative exchange interactions is carried out. The network is trained on the data collected by Monte–Carlo simulations for a simple Ising-like binary alloy model and used to calculate the Warren–Cowley short-range order parameter and other thermodynamic properties. We demonstrate that the proposed method allows us not only to correctly reproduce the order parameters for the alloy concentration at which the network was trained, but can also predict them for any other concentrations.展开更多
基金The National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2013BAK01B02)the National Natural Science Foundation of China(No.61373176)the Scientific Research Projects of Shaanxi Educational Committee(No.14JK1693)
文摘This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets (DBN) is proposed to conduct intrusion detection,and the principles regarding DBN are discussed.The DBN is composed of a multiple unsupervised restricted Boltzmann machine (RBM) and a supervised back propagation (BP)network.First,the DBN in the proposed model is pre-trained in a fast and greedy way,and each RBM is trained by the contrastive divergence algorithm.Secondly,the whole network is fine-tuned by the supervised BP algorithm,which is employed for classifying the low-dimensional features of the intrusion data generated by the last RBM layer simultaneously.The experimental results on the KDD CUP 1999 dataset demonstrate that the DBN using the RBM network with three or more layers outperforms the self-organizing maps (SOM)and neural network (NN)in intrusion classification.Therefore,the DBN is an efficient approach for intrusion detection in high-dimensional space.
基金the National Natural Science Foundation of China(Nos.12172017 and 12202021)。
文摘Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical performance during simulation;however,the value method of the relaxation parameters needs to be specified.Therefore,in this study,a random forest(RF)model is used to discriminate the importance of different relaxation parameters to the convergence,and a support vector machine(SVM)is used to explore the decision boundary of the convergent samples in each dimensional model.The results show that the convergence of the samples is consistent with the sign of the decision number,and two types of the numerical deviations appear,i.e.,the phase mushy zone and the non-physical heat transfer.The relaxation parameters chosen on the decision boundary can further suppress the numerical bias and improve numerical accuracy.
基金the financial support from the National Key R&D Program of China(Grant No.2020YFA0405700).
文摘Online monitoring and diagnosis of production processes face great challenges due to the nonlinearity and multivariate of complex industrial processes.Traditional process monitoring methods employ kernel function or multilayer neural networks to solve the nonlinear mapping problem of data.However,the above methods increase the model complexity and are not interpretable,leading to difficulties in subsequent fault recognition/diagnosis/location.A process monitoring and diagnosis method based on the free energy of Gaussian-Bernoulli restricted Boltzmann machine(GBRBM-FE)was proposed.Firstly,a GBRBM network was established to make the probability distribution of the reconstructed data as close as possible to the probability distribution of the raw data.On this basis,the weights and biases in GBRBM network were used to construct F statistics,which represents the free energy of the sample.The smaller the energy of the sample is,the more normal the sample is.Therefore,F statistics can be used to monitor the production process.To diagnose fault variables,the F statistic for each sample was decomposed to obtain the Fv statistic for each variable.By analyzing the deviation degree between the corresponding variables of abnormal samples and normal samples,the cause of process abnormalities can be accurately located.The application of converter steelmaking process demonstrates that the proposed method outperforms the traditional methods,in terms of fault monitoring and diagnosis performance.
基金supported by the financing program AAAA-A16-116021010082-8。
文摘A biased sampling algorithm for the restricted Boltzmann machine(RBM) is proposed, which allows generating configurations with a conserved quantity. To validate the method, a study of the short-range order in binary alloys with positive and negative exchange interactions is carried out. The network is trained on the data collected by Monte–Carlo simulations for a simple Ising-like binary alloy model and used to calculate the Warren–Cowley short-range order parameter and other thermodynamic properties. We demonstrate that the proposed method allows us not only to correctly reproduce the order parameters for the alloy concentration at which the network was trained, but can also predict them for any other concentrations.