目的受成像距离、光照条件、动态模糊等因素影响,监控系统拍摄的车牌图像往往并不具备较高的可辨识度。为改善成像质量,提升对车牌的识别能力,提出一种基于亮度与梯度联合约束的车牌图像超分辨率重建方法。方法首先充分结合亮度约束和...目的受成像距离、光照条件、动态模糊等因素影响,监控系统拍摄的车牌图像往往并不具备较高的可辨识度。为改善成像质量,提升对车牌的识别能力,提出一种基于亮度与梯度联合约束的车牌图像超分辨率重建方法。方法首先充分结合亮度约束和梯度约束的优势,实现对运动位移和模糊函数的精确估计;为抑制重建图像中的噪声与伪影,基于车牌图像的文字化特征,进一步确定了亮度与梯度联合约束的图像先验模型。结果为验证该方法的有效性,利用监控系统获得4组车牌图像,分别进行模拟和真实的超分辨率重建实验。在模拟实验中将联合约束图像先验重建结果与拉普拉斯、Huber-Markov(HMRF)以及总变分(TV)先验的处理结果进行对比,联合约束先验对车牌纹理信息的恢复效果优于其他3种常见图像先验;同时,在模拟和真实实验中,将本文算法与双三次插值、传统最大后验概率、非线性扩散正则化和自适应范数正则化方法的超分辨率重建结果进行比较,模拟实验的结果表明,在不添加噪声情况下,该算法峰值信噪比(PSNR)和结构相似性(SSIM)指标分别为35.326 d B和0.958,优于其他4种算法;该算法在真实实验中,能够有效增强车牌图像纹理信息,获得较优的视觉效果,通过对重建车牌图像的字符识别精度比较,本文算法重建结果的识别精度远高于其他3种算法,平均字符差距为1.3。结论模拟和真实图像序列的实验结果证明,基于亮度—梯度联合约束的超分辨率重建方法,能够降低运动和模糊等参数的估计误差,有效减少图像中存在的模糊和噪声,提高车牌的识别精度。该算法广泛适用于因光照变化、相对运动等因素影响下的低质量车牌图像超分辨率重建。展开更多
遥感卫星传感器与观测目标之间的相对运动是导致遥感图像退化的常见因素之一。对运动模糊图像的频谱特性进行了分析,基于Radon变换估算运动模糊角度和长度,进而准确估计退化图像的点扩散函数进行图像复原。针对实际模糊图像频谱中出现...遥感卫星传感器与观测目标之间的相对运动是导致遥感图像退化的常见因素之一。对运动模糊图像的频谱特性进行了分析,基于Radon变换估算运动模糊角度和长度,进而准确估计退化图像的点扩散函数进行图像复原。针对实际模糊图像频谱中出现的十字亮线严重干扰Radon变换准确性的问题,提出频谱分块与边缘检测相结合的改进算法,提高了检测精度。最后对实际发生运动模糊的对月遥感图像进行了模糊参数估计,并采用FTVd(fast total variation(TV)deconvolution)算法进行图像复原,实验证明参数估计精确,复原效果好。展开更多
文摘目的受成像距离、光照条件、动态模糊等因素影响,监控系统拍摄的车牌图像往往并不具备较高的可辨识度。为改善成像质量,提升对车牌的识别能力,提出一种基于亮度与梯度联合约束的车牌图像超分辨率重建方法。方法首先充分结合亮度约束和梯度约束的优势,实现对运动位移和模糊函数的精确估计;为抑制重建图像中的噪声与伪影,基于车牌图像的文字化特征,进一步确定了亮度与梯度联合约束的图像先验模型。结果为验证该方法的有效性,利用监控系统获得4组车牌图像,分别进行模拟和真实的超分辨率重建实验。在模拟实验中将联合约束图像先验重建结果与拉普拉斯、Huber-Markov(HMRF)以及总变分(TV)先验的处理结果进行对比,联合约束先验对车牌纹理信息的恢复效果优于其他3种常见图像先验;同时,在模拟和真实实验中,将本文算法与双三次插值、传统最大后验概率、非线性扩散正则化和自适应范数正则化方法的超分辨率重建结果进行比较,模拟实验的结果表明,在不添加噪声情况下,该算法峰值信噪比(PSNR)和结构相似性(SSIM)指标分别为35.326 d B和0.958,优于其他4种算法;该算法在真实实验中,能够有效增强车牌图像纹理信息,获得较优的视觉效果,通过对重建车牌图像的字符识别精度比较,本文算法重建结果的识别精度远高于其他3种算法,平均字符差距为1.3。结论模拟和真实图像序列的实验结果证明,基于亮度—梯度联合约束的超分辨率重建方法,能够降低运动和模糊等参数的估计误差,有效减少图像中存在的模糊和噪声,提高车牌的识别精度。该算法广泛适用于因光照变化、相对运动等因素影响下的低质量车牌图像超分辨率重建。
文摘遥感卫星传感器与观测目标之间的相对运动是导致遥感图像退化的常见因素之一。对运动模糊图像的频谱特性进行了分析,基于Radon变换估算运动模糊角度和长度,进而准确估计退化图像的点扩散函数进行图像复原。针对实际模糊图像频谱中出现的十字亮线严重干扰Radon变换准确性的问题,提出频谱分块与边缘检测相结合的改进算法,提高了检测精度。最后对实际发生运动模糊的对月遥感图像进行了模糊参数估计,并采用FTVd(fast total variation(TV)deconvolution)算法进行图像复原,实验证明参数估计精确,复原效果好。