A high-order shock-fitting finite difference scheme is studied and used to do direc-tion numerical simulation (DNS) of hypersonic unsteady flow over a blunt cone with fast acoustic waves in the free stream, and the re...A high-order shock-fitting finite difference scheme is studied and used to do direc-tion numerical simulation (DNS) of hypersonic unsteady flow over a blunt cone with fast acoustic waves in the free stream, and the receptivity problem in the blunt cone hypersonic boundary layers is studied. The results show that the acoustic waves are the strongest disturbance in the blunt cone hypersonic boundary layers. The wave modes of disturbance in the blunt cone boundary layers are first, second, and third modes which are generated and propagated downstream along the wall. The results also show that as the frequency decreases, the amplitudes of wave modes of disturbance increase, but there is a critical value. When frequency is over the critial value, the amplitudes decrease. Because of the discontinuity of curvature along the blunt cone body, the maximum amplitudes as a function of frequencies are not monotone.展开更多
The hypersonic boundary-layer receptivity to slow acoustic waves is investigated for the Mach 6 flow over a 5-degree half-angle blunt cone with the nose radius of 5.08 mm. The plane acoustic wave interacts with the bo...The hypersonic boundary-layer receptivity to slow acoustic waves is investigated for the Mach 6 flow over a 5-degree half-angle blunt cone with the nose radius of 5.08 mm. The plane acoustic wave interacts with the bow shock, and generates all types of disturbances behind the shock, which may take various routes to generate the boundarylayer unstable mode. In this paper, two routes of receptivity are investigated in detail.One is through the disturbance in the entropy layer. The other is through the slow acoustic wave transmitted downstream the bow shock, which can excite the boundary-layer mode due to the synchronization mechanism. The results show that, for a low frequency slow acoustic wave, the latter route plays a leading role. The entropy-layer instability wave is able to excite the first mode near the neutral point, but its receptivity efficiency is much lower.展开更多
Stability and transition prediction of hypersonic boundary layer on a blunt cone with small nose bluntness at zero angle of attack was investigated. The nose radius of the cone is 0.5 mm; the cone half-angle is 5°...Stability and transition prediction of hypersonic boundary layer on a blunt cone with small nose bluntness at zero angle of attack was investigated. The nose radius of the cone is 0.5 mm; the cone half-angle is 5°, and the Mach number of the oncoming flow is 6. The base flow of the blunt cone was obtained by direct numerical simulation. The linear stability theory was applied for the analysis of the first mode and the second mode unstable waves under both isothermal and adiabatic wall condition, and e^N method was used for the prediction of transition location. The N factor was tentatively taken as 10, as no experimentally confirmed value was available. It is found that the wall temperature condition has a great effect on the transition location. For adiabatic wall, transition would take place more rearward than those for isothermal wall. And despite that for high Mach number flows, the maximum amplification rate of the second mode wave is far bigger than the maximum amplification rate of the first mode wave, the transition location of the boundary layer with adiabatic wall is controlled by the growth of first mode unstable waves. The methods employed in this paper are expected to be also applicable to the transition prediction for the three dimensional boundary layers on cones with angle of attack.展开更多
In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scatt...In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.展开更多
To investigate the effect of different disturbances in the upstream, we present numerical simulation of transition for a hypersonic boundary layer on a 5-degree half-angle blunt cone in a freestream with Mach number 6...To investigate the effect of different disturbances in the upstream, we present numerical simulation of transition for a hypersonic boundary layer on a 5-degree half-angle blunt cone in a freestream with Mach number 6 at 1-degree angle of attack. Evolution of small disturbances is simulated to compare with the linear stability theory (LST), indicating that LST can provide a good prediction on the growth rate of the disturbance. The effect of different disturbances on transition is investigated. Transition onset distributions along the azimuthal direction are obtained with two groups of disturbances of different frequencies. It shows that transition onset is relevant to frequencies and amplitudes of the disturbances at the inlet, and is decided by the amplitudes of most unstable waves at the inlet. According to the characteristics of environmental disturbances in most wind tunnels, we explain why transition occurs leeside-forward and windside-aft over a circular cone at an angle of attack. Moreover, the indentation phenomenon in the transition curve on the leeward is also revealed.展开更多
For direct numerical simulation (DNS) of turbulent boundary layers, generation of an appropriate inflow condition needs to be considered. This paper proposes a method, with which the inflow condition for spatial-mod...For direct numerical simulation (DNS) of turbulent boundary layers, generation of an appropriate inflow condition needs to be considered. This paper proposes a method, with which the inflow condition for spatial-mode DNS of turbulent boundary layers on supersonic blunt cones with different Mach numbers, Reynolds numbers and wall temperature conditions can be generated. This is based only on a given instant flow field obtained by a temporal-mode DNS of a turbulent boundary layer on a flat plate. Effectiveness of the method is shown in three typical examples by comparing the results with those obtained by other methods.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 10632050 and 10502052)
文摘A high-order shock-fitting finite difference scheme is studied and used to do direc-tion numerical simulation (DNS) of hypersonic unsteady flow over a blunt cone with fast acoustic waves in the free stream, and the receptivity problem in the blunt cone hypersonic boundary layers is studied. The results show that the acoustic waves are the strongest disturbance in the blunt cone hypersonic boundary layers. The wave modes of disturbance in the blunt cone boundary layers are first, second, and third modes which are generated and propagated downstream along the wall. The results also show that as the frequency decreases, the amplitudes of wave modes of disturbance increase, but there is a critical value. When frequency is over the critial value, the amplitudes decrease. Because of the discontinuity of curvature along the blunt cone body, the maximum amplitudes as a function of frequencies are not monotone.
基金Project supported by the National Natural Science Foundation of China(Nos.11472188 and11332007)the National Key Research and Development Program of China(No.2016YFA0401200)
文摘The hypersonic boundary-layer receptivity to slow acoustic waves is investigated for the Mach 6 flow over a 5-degree half-angle blunt cone with the nose radius of 5.08 mm. The plane acoustic wave interacts with the bow shock, and generates all types of disturbances behind the shock, which may take various routes to generate the boundarylayer unstable mode. In this paper, two routes of receptivity are investigated in detail.One is through the disturbance in the entropy layer. The other is through the slow acoustic wave transmitted downstream the bow shock, which can excite the boundary-layer mode due to the synchronization mechanism. The results show that, for a low frequency slow acoustic wave, the latter route plays a leading role. The entropy-layer instability wave is able to excite the first mode near the neutral point, but its receptivity efficiency is much lower.
基金Project supported by the National Natural Science Foundation of China (No.10632050)the Science Foundation of Liu-Hui Center of Applied Mathematics of Nankai University and Tianjin University.
文摘Stability and transition prediction of hypersonic boundary layer on a blunt cone with small nose bluntness at zero angle of attack was investigated. The nose radius of the cone is 0.5 mm; the cone half-angle is 5°, and the Mach number of the oncoming flow is 6. The base flow of the blunt cone was obtained by direct numerical simulation. The linear stability theory was applied for the analysis of the first mode and the second mode unstable waves under both isothermal and adiabatic wall condition, and e^N method was used for the prediction of transition location. The N factor was tentatively taken as 10, as no experimentally confirmed value was available. It is found that the wall temperature condition has a great effect on the transition location. For adiabatic wall, transition would take place more rearward than those for isothermal wall. And despite that for high Mach number flows, the maximum amplification rate of the second mode wave is far bigger than the maximum amplification rate of the first mode wave, the transition location of the boundary layer with adiabatic wall is controlled by the growth of first mode unstable waves. The methods employed in this paper are expected to be also applicable to the transition prediction for the three dimensional boundary layers on cones with angle of attack.
基金Project supported by the National Basic Research Program of China (Grant No. 2009 CB724100)the National Natural Science Foundation of China (Grant No. 11172326)
文摘In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.
基金Project supported by the National Natural Science Foundation of China (Nos. 90716007 and 10632050)the National Natural Science Foundation of China for Distinguished Young Scholars (No. 10802058)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 200800561087)
文摘To investigate the effect of different disturbances in the upstream, we present numerical simulation of transition for a hypersonic boundary layer on a 5-degree half-angle blunt cone in a freestream with Mach number 6 at 1-degree angle of attack. Evolution of small disturbances is simulated to compare with the linear stability theory (LST), indicating that LST can provide a good prediction on the growth rate of the disturbance. The effect of different disturbances on transition is investigated. Transition onset distributions along the azimuthal direction are obtained with two groups of disturbances of different frequencies. It shows that transition onset is relevant to frequencies and amplitudes of the disturbances at the inlet, and is decided by the amplitudes of most unstable waves at the inlet. According to the characteristics of environmental disturbances in most wind tunnels, we explain why transition occurs leeside-forward and windside-aft over a circular cone at an angle of attack. Moreover, the indentation phenomenon in the transition curve on the leeward is also revealed.
基金the National Natural Science Foundation of China(Nos.10632050,90716007)the Special Foundation for the Authors of National Excellent Doctoral Dissertations(No.200328)
文摘For direct numerical simulation (DNS) of turbulent boundary layers, generation of an appropriate inflow condition needs to be considered. This paper proposes a method, with which the inflow condition for spatial-mode DNS of turbulent boundary layers on supersonic blunt cones with different Mach numbers, Reynolds numbers and wall temperature conditions can be generated. This is based only on a given instant flow field obtained by a temporal-mode DNS of a turbulent boundary layer on a flat plate. Effectiveness of the method is shown in three typical examples by comparing the results with those obtained by other methods.