An Efficient and flexible implementation of block ciphers is critical to achieve information security processing.Existing implementation methods such as GPP,FPGA and cryptographic application-specific ASIC provide the...An Efficient and flexible implementation of block ciphers is critical to achieve information security processing.Existing implementation methods such as GPP,FPGA and cryptographic application-specific ASIC provide the broad range of support.However,these methods could not achieve a good tradeoff between high-speed processing and flexibility.In this paper,we present a reconfigurable VLIW processor architecture targeted at block cipher processing,analyze basic operations and storage characteristics,and propose the multi-cluster register-file structure for block ciphers.As for the same operation element of block ciphers,we adopt reconfigurable technology for multiple cryptographic processing units and interconnection scheme.The proposed processor not only flexibly accomplishes the combination of multiple basic cryptographic operations,but also realizes dynamic configuration for cryptographic processing units.It has been implemented with0.18μm CMOS technology,the test results show that the frequency can reach 350 MHz.and power consumption is 420 mw.Ten kinds of block and hash ciphers were realized in the processor.The encryption throughput of AES,DES,IDEA,and SHA-1 algorithm is1554 Mbps,448Mbps,785 Mbps,and 424 Mbps respectively,the test result shows that our processor's encryption performance is significantly higher than other designs.展开更多
This paper addresses the planning problem of residential micro combined heat and power (micro-CHP) systems (including micro-generation units, auxiliary boilers, and thermal storage tanks) considering the associated te...This paper addresses the planning problem of residential micro combined heat and power (micro-CHP) systems (including micro-generation units, auxiliary boilers, and thermal storage tanks) considering the associated technical and economic factors. Since the accurate values of the thermal and electrical loads of this system cannot be exactly predicted for the planning horizon, the thermal and electrical load uncertainties are modeled using a two-stage adaptive robust optimization method based on a polyhedral uncertainty set. A solution method, which is composed of column-and-constraint generation (C&CG) algorithm and block coordinate descent (BCD) method, is proposed to efficiently solve this adaptive robust optimization model. Numerical results from a practical case study show the effective performance of the proposed adaptive robust model for residential micro-CHP planning and its solution method.展开更多
基金supported by National Natural Science Foundation of China with granted No.61404175
文摘An Efficient and flexible implementation of block ciphers is critical to achieve information security processing.Existing implementation methods such as GPP,FPGA and cryptographic application-specific ASIC provide the broad range of support.However,these methods could not achieve a good tradeoff between high-speed processing and flexibility.In this paper,we present a reconfigurable VLIW processor architecture targeted at block cipher processing,analyze basic operations and storage characteristics,and propose the multi-cluster register-file structure for block ciphers.As for the same operation element of block ciphers,we adopt reconfigurable technology for multiple cryptographic processing units and interconnection scheme.The proposed processor not only flexibly accomplishes the combination of multiple basic cryptographic operations,but also realizes dynamic configuration for cryptographic processing units.It has been implemented with0.18μm CMOS technology,the test results show that the frequency can reach 350 MHz.and power consumption is 420 mw.Ten kinds of block and hash ciphers were realized in the processor.The encryption throughput of AES,DES,IDEA,and SHA-1 algorithm is1554 Mbps,448Mbps,785 Mbps,and 424 Mbps respectively,the test result shows that our processor's encryption performance is significantly higher than other designs.
文摘This paper addresses the planning problem of residential micro combined heat and power (micro-CHP) systems (including micro-generation units, auxiliary boilers, and thermal storage tanks) considering the associated technical and economic factors. Since the accurate values of the thermal and electrical loads of this system cannot be exactly predicted for the planning horizon, the thermal and electrical load uncertainties are modeled using a two-stage adaptive robust optimization method based on a polyhedral uncertainty set. A solution method, which is composed of column-and-constraint generation (C&CG) algorithm and block coordinate descent (BCD) method, is proposed to efficiently solve this adaptive robust optimization model. Numerical results from a practical case study show the effective performance of the proposed adaptive robust model for residential micro-CHP planning and its solution method.