Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enorm...Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enormous computer memory which limits the application of WriT. In order to solve this problem, a method based on segmented WriT is proposed in this paper. The coefficient vector of high dimension is reshaped and two vectors of lower dimension are obtained. Then the WriT is operated and the requirement for computer memory is much reduced. The code rate and the constraint length of convolutional code are detected from the Walsh spectrum. And the check vector is recovered from the peak position. The validity of the method is verified by the simulation result, and the performance is proved to be optimal.展开更多
为了提高低分辨率模糊图像的质量,提出了一种基于自适应双l_p-l_2范数的超分辨率盲重建方法。该方法分为模糊核估计子过程和超分辨率非盲重建子过程。在模糊核估计子过程中,使用双l_p-l_2范数先验同时约束锐化图像和模糊核的估计,并使...为了提高低分辨率模糊图像的质量,提出了一种基于自适应双l_p-l_2范数的超分辨率盲重建方法。该方法分为模糊核估计子过程和超分辨率非盲重建子过程。在模糊核估计子过程中,使用双l_p-l_2范数先验同时约束锐化图像和模糊核的估计,并使用图像梯度的阈值分割,实现锐化图像l_p-l_2范数约束的自适应组合;在超分辨率非盲重建子过程中,结合估计到的模糊核,使用基于非局部中心化稀疏表示的超分辨率方法重建出最终的高分辨率图像。仿真实验中,与基于双l_0-l_2范数的方法相比,该算法重建结果的平均峰值信噪比(PSNR)提高了0.16 d B,平均结构相似度(SSIM)提高了0.004 5,平均差方和比降低了0.13。实验结果表明,所提方法能估计出较准确的模糊核,最终的重建图像中,振铃得到有效抑制,图像质量较好。展开更多
基金supported by the National Natural Science Foundation of China(61072120)
文摘Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enormous computer memory which limits the application of WriT. In order to solve this problem, a method based on segmented WriT is proposed in this paper. The coefficient vector of high dimension is reshaped and two vectors of lower dimension are obtained. Then the WriT is operated and the requirement for computer memory is much reduced. The code rate and the constraint length of convolutional code are detected from the Walsh spectrum. And the check vector is recovered from the peak position. The validity of the method is verified by the simulation result, and the performance is proved to be optimal.
文摘为了提高低分辨率模糊图像的质量,提出了一种基于自适应双l_p-l_2范数的超分辨率盲重建方法。该方法分为模糊核估计子过程和超分辨率非盲重建子过程。在模糊核估计子过程中,使用双l_p-l_2范数先验同时约束锐化图像和模糊核的估计,并使用图像梯度的阈值分割,实现锐化图像l_p-l_2范数约束的自适应组合;在超分辨率非盲重建子过程中,结合估计到的模糊核,使用基于非局部中心化稀疏表示的超分辨率方法重建出最终的高分辨率图像。仿真实验中,与基于双l_0-l_2范数的方法相比,该算法重建结果的平均峰值信噪比(PSNR)提高了0.16 d B,平均结构相似度(SSIM)提高了0.004 5,平均差方和比降低了0.13。实验结果表明,所提方法能估计出较准确的模糊核,最终的重建图像中,振铃得到有效抑制,图像质量较好。