Wheat blast,caused by the fungus Magnaporthe oryzae Triticum(MoT)pathotype,is a devastating disease persistent in South America and Bangladesh.Since MoT generally fails to cause visual symptoms in wheat until the head...Wheat blast,caused by the fungus Magnaporthe oryzae Triticum(MoT)pathotype,is a devastating disease persistent in South America and Bangladesh.Since MoT generally fails to cause visual symptoms in wheat until the heading stage when the infection would have advanced,disease control by fungicide application solely based on the detection of visual symptoms is ineffective.To develop an accurate and sensitive method to detect MoT at the seedling and vegetative stages for disease control,we sequenced the genomes of two MoT isolates from Brazil and identified two DNA fragments,MoT-6098 and MoT-6099,that are present in the MoT genome but not in the genome of the rice-infecting Magnaporthe oryzae Oryzae(MoO)pathotype.Using polymerase chain reaction(PCR),we confirmed the specificity of the two markers in 53 MoT and MoO isolates from South America and Bangladesh.To test the efficiency of the two markers,we first established a loop-mediated isothermal amplification(LAMP)method to detect MoT at isothermal conditions,without the use of a PCR machine.Following this,we used the Cas12a protein and guide RNAs(gRNAs)to target the MoT-6098 and MoT-6099 sequences.The activated Cas12a showed indiscriminate single-stranded deoxyribonuclease(ssDNase)activity.We then combined targetdependent Cas12a ssDNase activation with recombinase polymerase amplification(RPA)and nucleic acid lateral flow immunoassay(NALFIA)to develop a method that accurately,sensitively,and cost-effectively detects MoT-specific DNA sequences in infected wheat plants.This novel technique can be easily adapted for the rapid detection of wheat blast and other important plant diseases in the field.展开更多
Reducing CO_(2)emissions of the iron and steel industry,a typical heavy CO_(2)-emitting sector is the only way that must be passed to achieve the‘dual-carbon’goal,especially in China.In previous studies,however,it i...Reducing CO_(2)emissions of the iron and steel industry,a typical heavy CO_(2)-emitting sector is the only way that must be passed to achieve the‘dual-carbon’goal,especially in China.In previous studies,however,it is still unknown what is the difference between blast furnace basic oxygen furnace(BF-BOF),scrap-electric furnace(scrap-EF)and hydrogen metallurgy process.The quantitative research on the key factors affecting CO_(2)emissions is insufficient There is also a lack of research on the prediction of CO_(2)emissions by adjusting industria structure.Based on material flow analysis,this study establishes carbon flow diagrams o three processes,and then analyze the key factors affecting CO_(2)emissions.CO_(2)emissions of the iron and steel industry in the future is predicted by adjusting industrial structure The results show that:(1)The CO_(2)emissions of BF-BOF,scrap-EF and hydrogen metallurgy process in a site are 1417.26,542.93 and 1166.52 kg,respectively.(2)By increasing pellet ratio in blast furnace,scrap ratio in electric furnace,etc.,can effectively reduce CO_(2)emissions(3)Reducing the crude steel output is the most effective CO_(2)reduction measure.There is still 5.15×10^(8)-6.17×10^(8) tons of CO_(2)that needs to be reduced by additional measures.展开更多
基金The data that support the findings of this study have being submitted to GenBank and the accession numbers are JAAXMV000000000 and JAAXMU000000000.
文摘Wheat blast,caused by the fungus Magnaporthe oryzae Triticum(MoT)pathotype,is a devastating disease persistent in South America and Bangladesh.Since MoT generally fails to cause visual symptoms in wheat until the heading stage when the infection would have advanced,disease control by fungicide application solely based on the detection of visual symptoms is ineffective.To develop an accurate and sensitive method to detect MoT at the seedling and vegetative stages for disease control,we sequenced the genomes of two MoT isolates from Brazil and identified two DNA fragments,MoT-6098 and MoT-6099,that are present in the MoT genome but not in the genome of the rice-infecting Magnaporthe oryzae Oryzae(MoO)pathotype.Using polymerase chain reaction(PCR),we confirmed the specificity of the two markers in 53 MoT and MoO isolates from South America and Bangladesh.To test the efficiency of the two markers,we first established a loop-mediated isothermal amplification(LAMP)method to detect MoT at isothermal conditions,without the use of a PCR machine.Following this,we used the Cas12a protein and guide RNAs(gRNAs)to target the MoT-6098 and MoT-6099 sequences.The activated Cas12a showed indiscriminate single-stranded deoxyribonuclease(ssDNase)activity.We then combined targetdependent Cas12a ssDNase activation with recombinase polymerase amplification(RPA)and nucleic acid lateral flow immunoassay(NALFIA)to develop a method that accurately,sensitively,and cost-effectively detects MoT-specific DNA sequences in infected wheat plants.This novel technique can be easily adapted for the rapid detection of wheat blast and other important plant diseases in the field.
基金supported by the National Natural Science Foundation of China(No.52270177)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)the Key R&D Plan of Liaoning Province(No.2021JH2/10300103)。
文摘Reducing CO_(2)emissions of the iron and steel industry,a typical heavy CO_(2)-emitting sector is the only way that must be passed to achieve the‘dual-carbon’goal,especially in China.In previous studies,however,it is still unknown what is the difference between blast furnace basic oxygen furnace(BF-BOF),scrap-electric furnace(scrap-EF)and hydrogen metallurgy process.The quantitative research on the key factors affecting CO_(2)emissions is insufficient There is also a lack of research on the prediction of CO_(2)emissions by adjusting industria structure.Based on material flow analysis,this study establishes carbon flow diagrams o three processes,and then analyze the key factors affecting CO_(2)emissions.CO_(2)emissions of the iron and steel industry in the future is predicted by adjusting industrial structure The results show that:(1)The CO_(2)emissions of BF-BOF,scrap-EF and hydrogen metallurgy process in a site are 1417.26,542.93 and 1166.52 kg,respectively.(2)By increasing pellet ratio in blast furnace,scrap ratio in electric furnace,etc.,can effectively reduce CO_(2)emissions(3)Reducing the crude steel output is the most effective CO_(2)reduction measure.There is still 5.15×10^(8)-6.17×10^(8) tons of CO_(2)that needs to be reduced by additional measures.