For the solid blanket concept of helium cooled ceramic breeder (HCCB) demonstration fusion power plant (DEMO), a feasible blanket structure with configuration 2×X is proposed as considering relatively low tempera...For the solid blanket concept of helium cooled ceramic breeder (HCCB) demonstration fusion power plant (DEMO), a feasible blanket structure with configuration 2×X is proposed as considering relatively low temperature limit of neutron multiplier beryllium pebbles. Based on that, preliminary design for the typical blanket module of HCCB DEMO has been carried out and verified by thermal-hydraulic analysis and structural analysis. Furthermore, the specific relationship of maximum temperature depended on the surface heating of blanket key part first wall (FW) is also analyzed.展开更多
The performance and rnicrobial community structure in an upflow anaerobic sludge blanket reactor (UASB) treating sugar refinery wastewater were investigated. The chemical oxygen demand (COD) removal reached above ...The performance and rnicrobial community structure in an upflow anaerobic sludge blanket reactor (UASB) treating sugar refinery wastewater were investigated. The chemical oxygen demand (COD) removal reached above 92.0% at organic loading rates (OLRs) of 12.0-54.0 kgCOD/(m^3· d). The volatile lhtty acids (VFAs) in effluent were increased to 451.1 mg/L from 147.9 mg/L and the specific methane production rate improved by 1.2 2.2-1bid as the OLR increased. The evolution of microbial comnmnities in anaerobic sludge at three different OLRs was investigated using pyrosequencing. Operational taxonomic units (OTUs) at a 3% distance were 353,337 and 233 for OLRI2, OLR36 and OLR54, respectively. When the OLR was increased to 54.0 kgCOD/(m^3· d) from 12.0 kgCOD/ (m^3· d) by stepwise, the microbial community structure were changed significantly. Five genera (Bacteroides, Trichococcus, Cho,seobacterium, Longilinea and Aerococcus) were the dominant fermentative bacteria at the OLR 12-0 kgCOD/(m^3· d). However, the sample of OLR36 was dominated by Lacmcoccus, Trichococcus, Anaer-arcus and Veillonella. At the last stage (OLR = 54.0 kgCOD/ (m^3· d), the diversity and percentage of femlentative bacteria were markedly increased. Apart from fermentative bacteria, an obvious shift was observed in hydrogen-producing acetogens and non- acetotrophic methanogens as OLR increased. Svntrophohacter, Geobacter and Methanomethylovor- ans were the dominant hydrogen-producing acetogens and methylotrophic methanogens in the samples of OLRI2 and OLR36. When the OLR was increased to 54.0 kgCOD/(m^3· d), the mare hydrogen-producing acetogens and hydrogenotrophic methanogens were substituted with Destd/bvi- brio and Methanospillum. However, the composition of acetotrophic methanogens (Methanosaeta) was relatively stable during the whole operation period of the UASB reactor.展开更多
The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS ...The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermal-hydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account. All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis.展开更多
基金supported by the National Special Project of China for magnetic confined nuclear fusion energy(2015GB108004)
文摘For the solid blanket concept of helium cooled ceramic breeder (HCCB) demonstration fusion power plant (DEMO), a feasible blanket structure with configuration 2×X is proposed as considering relatively low temperature limit of neutron multiplier beryllium pebbles. Based on that, preliminary design for the typical blanket module of HCCB DEMO has been carried out and verified by thermal-hydraulic analysis and structural analysis. Furthermore, the specific relationship of maximum temperature depended on the surface heating of blanket key part first wall (FW) is also analyzed.
基金This work was supported by the National Natural Science Foundation of China (Nos. 51508316 and 51708341 ), Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QA201523), HIT Environment and Ecology Innovation Special Funds (No. HSCJ201614). Research Project for Young Sanjin Scholarship of Shanxi, Program for the Outstanding Innovative Team of Higher Learning Institutions of Shanxi, and Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology (No. TJKLAST- ZD-2016- 05).
文摘The performance and rnicrobial community structure in an upflow anaerobic sludge blanket reactor (UASB) treating sugar refinery wastewater were investigated. The chemical oxygen demand (COD) removal reached above 92.0% at organic loading rates (OLRs) of 12.0-54.0 kgCOD/(m^3· d). The volatile lhtty acids (VFAs) in effluent were increased to 451.1 mg/L from 147.9 mg/L and the specific methane production rate improved by 1.2 2.2-1bid as the OLR increased. The evolution of microbial comnmnities in anaerobic sludge at three different OLRs was investigated using pyrosequencing. Operational taxonomic units (OTUs) at a 3% distance were 353,337 and 233 for OLRI2, OLR36 and OLR54, respectively. When the OLR was increased to 54.0 kgCOD/(m^3· d) from 12.0 kgCOD/ (m^3· d) by stepwise, the microbial community structure were changed significantly. Five genera (Bacteroides, Trichococcus, Cho,seobacterium, Longilinea and Aerococcus) were the dominant fermentative bacteria at the OLR 12-0 kgCOD/(m^3· d). However, the sample of OLR36 was dominated by Lacmcoccus, Trichococcus, Anaer-arcus and Veillonella. At the last stage (OLR = 54.0 kgCOD/ (m^3· d), the diversity and percentage of femlentative bacteria were markedly increased. Apart from fermentative bacteria, an obvious shift was observed in hydrogen-producing acetogens and non- acetotrophic methanogens as OLR increased. Svntrophohacter, Geobacter and Methanomethylovor- ans were the dominant hydrogen-producing acetogens and methylotrophic methanogens in the samples of OLRI2 and OLR36. When the OLR was increased to 54.0 kgCOD/(m^3· d), the mare hydrogen-producing acetogens and hydrogenotrophic methanogens were substituted with Destd/bvi- brio and Methanospillum. However, the composition of acetotrophic methanogens (Methanosaeta) was relatively stable during the whole operation period of the UASB reactor.
基金Naional Nature Scienc Foundaion of China(No.10175067 and No.10175068)
文摘The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermal-hydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account. All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis.