The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influenc...The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influence of trap depth, trap volume charge density and injection barrier height on the space charge and the electric field distribution in the nanocomposite under a DC external electric field (100 MV/m) systematically and quantificationally, through numerical simulations based on a bipolar charge transport model. The simulation re- sults showed that, the increase of trap depth would severely distort the balanced electric field distribution with the highest and the lowest electric field of 119 MV/m and 47 MV/m, respectively. It is concluded that the introduction of nanofillers creates more deep traps, which would block space charges by capturing most of them in the vicinity of electrode and hence reduce the local electric field largely. Further theoretical analysis of the simulation indicates that both the high permittivity and the low local electric field of the nanocomposite contri- buted to the increase of injection barrier height, and almost no charge could overcome an injection barrier higher than 1.25 eV. At last, a mechanism of space charge suppression in the LDPE nanocomposite was presented.展开更多
Polyethylene is one of the widely studied polymeric insulation materials,which have been used extensively for cable insulation.One of the major issues related to polymeric materials is its easy formation of space char...Polyethylene is one of the widely studied polymeric insulation materials,which have been used extensively for cable insulation.One of the major issues related to polymeric materials is its easy formation of space charge,a high chance to cause electric field distortions.This phenomenon is more significant under high voltage direct current(HVDC)stresses.Space charge can also be observed under high voltage alternative current(HVAC)stresses but with much less intensity due to the limited charge injection period and the effect of charge recombination caused by the constantly variance of the external fields.When considering the situation of an AC voltage combined with a DC offset,a possible scenario in HVDC technology,there was little research on charge dynamics in the insulation in terms of both experimental and simulation work.In this paper,a numerical simulation based a bipolar charge injection/transport model is used to obtain characteristics of space charge in polyethylene under the combined AC and DC high voltage at room temperature.The bipolar charge injection/transport model,which is widely used in HVDC space charge simulation,is applied in the combined conditions.The overall applied voltage,consisted of root mean square(RMS)values of the AC voltage and DC voltage,is kept the same,while the DC component’s voltage ratio and AC component’s frequency are changed respectively,to illustrate their effects on the space charge dynamics within the insulation under combined electric fields.The simulated charge distributions present notable differences when DC offset is increasingly added in,while relatively small differences when AC component’s frequency altering,especially for the cases whose frequency exceeding 0.5 Hz.展开更多
基金Project supported by National Basic Research Program of China (973 Program) (2014 CB239501, 2011CB209400), National Natural Science Foundation of China (NSFC 50877040).
文摘The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influence of trap depth, trap volume charge density and injection barrier height on the space charge and the electric field distribution in the nanocomposite under a DC external electric field (100 MV/m) systematically and quantificationally, through numerical simulations based on a bipolar charge transport model. The simulation re- sults showed that, the increase of trap depth would severely distort the balanced electric field distribution with the highest and the lowest electric field of 119 MV/m and 47 MV/m, respectively. It is concluded that the introduction of nanofillers creates more deep traps, which would block space charges by capturing most of them in the vicinity of electrode and hence reduce the local electric field largely. Further theoretical analysis of the simulation indicates that both the high permittivity and the low local electric field of the nanocomposite contri- buted to the increase of injection barrier height, and almost no charge could overcome an injection barrier higher than 1.25 eV. At last, a mechanism of space charge suppression in the LDPE nanocomposite was presented.
文摘Polyethylene is one of the widely studied polymeric insulation materials,which have been used extensively for cable insulation.One of the major issues related to polymeric materials is its easy formation of space charge,a high chance to cause electric field distortions.This phenomenon is more significant under high voltage direct current(HVDC)stresses.Space charge can also be observed under high voltage alternative current(HVAC)stresses but with much less intensity due to the limited charge injection period and the effect of charge recombination caused by the constantly variance of the external fields.When considering the situation of an AC voltage combined with a DC offset,a possible scenario in HVDC technology,there was little research on charge dynamics in the insulation in terms of both experimental and simulation work.In this paper,a numerical simulation based a bipolar charge injection/transport model is used to obtain characteristics of space charge in polyethylene under the combined AC and DC high voltage at room temperature.The bipolar charge injection/transport model,which is widely used in HVDC space charge simulation,is applied in the combined conditions.The overall applied voltage,consisted of root mean square(RMS)values of the AC voltage and DC voltage,is kept the same,while the DC component’s voltage ratio and AC component’s frequency are changed respectively,to illustrate their effects on the space charge dynamics within the insulation under combined electric fields.The simulated charge distributions present notable differences when DC offset is increasingly added in,while relatively small differences when AC component’s frequency altering,especially for the cases whose frequency exceeding 0.5 Hz.