Carbonate carbon isotope (δ^13Ccarb) has received considerable attention in the Permian-Triassic transition for its rapid negative shift coinciding with the great end-Permian mass extinction event. The mechanism ha...Carbonate carbon isotope (δ^13Ccarb) has received considerable attention in the Permian-Triassic transition for its rapid negative shift coinciding with the great end-Permian mass extinction event. The mechanism has long been debated for such a c~ δ^13Ccarb negative excursion through the end-Permian crisis and subsequent large perturbations in the entire Early Triassic. A δ^13Ccarb depth gradient is observed at the Permian-Triassic boundary sections of different water-depths, i.e., the Yangou, Meishan, and Shangsi sections, and such a large δ^13Ccarb-depth gradient near the end-Permian mass extinction horizon is believed to result from a stratified Paleotethys Ocean with widespread anoxic/euxinic deep water. The evolution of δ^13Ccarb-depth gradient com- bined with paleontological and geochemical data suggests that abundant cyanobacteria and vigorous biological pump in the immediate aftermath of the end-Permian extinction would be the main cause of the large δ^13Ccarb-depth gradient, and the enhanced continental weathering with the mass extinction on land provides a mass amount of nutriment for the flourishing cyanobacteria. Photic zone anoxia/euxinia from the onset of chemocline upward excursion might be the direct cause for the mass extinction whereas the instability of chemocline in the stratified Early Triassic ocean would be the reason for the delayed and involuted biotic recovery.展开更多
Progeny studies of Jatropha curcas and Pongamia pinnata were carried with respect to bioproductivity,pod and seed characters which is one of the selection methods in tree improvement programmes. Variations in bioprodu...Progeny studies of Jatropha curcas and Pongamia pinnata were carried with respect to bioproductivity,pod and seed characters which is one of the selection methods in tree improvement programmes. Variations in bioproductivity and biodiesel parameters of both the plants were compared every 6 months for 4 years of investigation and analyzed by analysis of variance and correlation coefficient by Pearson's method using software Graphpad instat 3.06(for Windows and Mac). P. pinnata has better germination rate(71.4 %), 100 pod weight(PW)(311.59 g) and 100 seed weight(SW)(173.46 g) as compared to J. curcas for germination rate(43.2 %), 100 PW(111.29 g) and 100 SW(67.46 g). P. pinnata has strong correlation for plant height to canopy growth(CG)(0.948), collar diameter(CD)(0.994), number of branches per plant(NBP)(0.995) and to number of leaves per branch(NLB)(0.862) as compared to J.curcas which showed good correlation among plant height to CG(0.976), CD(0.970), NBP(0.988), NLB(0.920) and to number of pods per branch(0.657). However, J. curcas depicted negative correlation for pod breadth to seed length(SL)(-0.447), seed breadth(-0.248) and to seed thickness(ST)(-0.364) and among the 100 PW to SL(-0.199), ST(-0.220) and to 100 SW(-0.704). About 4 kg of P. pinnata seeds were required for each liter of crude oil which yields896 ml of biodiesel on transesterification as compared to5.66 kg of J. curcas seeds for a liter of crude oil, producing about 663 ml of biodiesel. The quality of biodiesel meets the major specification of American Society for Testing and Materials(ASTM) standards for biodiesel. The crude glycerin and seed cake obtained as byproduct during biodiesel production were also measured which can be purified and used in composting, animal feeds, pharmaceuticals and cosmetic industries.展开更多
The problem of biogenic income from rocks into a water ecosystem and of their use by hydrobionts is considered by the example of Lake Baikal biogeocenoses. A complex interreaction of stony material and Baikal water oc...The problem of biogenic income from rocks into a water ecosystem and of their use by hydrobionts is considered by the example of Lake Baikal biogeocenoses. A complex interreaction of stony material and Baikal water occurs on the stony littoral of Lake Baikal with an active participation of benthic and planktonic hydrobionts. Biogeochemical processes enable income of biophile elements providing productivity of stony littoral and hydrobionts biodiversity. A particular role in the littoral zone belongs to symbiotic organisms: lichens and sponges. They extract from the tocks a wide spectrum of macro- and micro- elements including phosphorus, fixe nitrogen and consume carbon. Biodiversity and bioproductivity of stony littoral depend on the diversity of petrographic composition of the rocks and on their geochemical peculiarities. Increase of anthropogenic impact onto the stony littoral manifested by income of biogenic elements and alien microbial cenosis flow results in degradation of primary aquatic biogeocenoses.展开更多
The productivity and health of our ocean hold some good solutions to the world’s challenges in socio-economy.However,climate change and waste discharge are changing the marine capacity to buffer human impacts,further...The productivity and health of our ocean hold some good solutions to the world’s challenges in socio-economy.However,climate change and waste discharge are changing the marine capacity to buffer human impacts,further challenging the marine industry,primarily in offshore oil and gas,shipping,and fishery operations.These encourage the blue economy,a sustainable development approach to utilize marine resources.Petroleum microbiology dealing with microbes that can respond,degrade,and alter crude oils,offers an unprecedented opportunity to achieve the knowledge-and science-based blue economy.However,the new-era petroleum microbiology for supporting the blue economy has yet to be systematically discussed.This review introduces the climate change impacts on key marine industrial sectors,highlights the critical role of advanced petroleum microbiology in supporting sustainable development,and offers insight into the challenges and future research opportunities in availing of petroleum microbiology for benefiting our marine environment and responsible economic growth.展开更多
The study was conducted in an organic nursery of sour cherry cultivars "Debreceni Botermo" and "Sabina" in the years 2010 and 2011. Cherry trees grafted on Mahaleb (Prunus mahaleb L.) seedlings were grown at a s...The study was conducted in an organic nursery of sour cherry cultivars "Debreceni Botermo" and "Sabina" in the years 2010 and 2011. Cherry trees grafted on Mahaleb (Prunus mahaleb L.) seedlings were grown at a spacing of 25 crn × 1.0 m. In the nursery, an assessment was carried out of the effect of various biopreparations on such growth characteristics as the thickness and height of the maidens, the formation of lateral shoots and the total increase in their length. The control trees were not treated at all, but fertilized with an NPK fertilizer only (second control). To stimulate growth, use was made of granular manure, mycorrhizal fungi in the form of the preparation Micosat, humic preparations or so-called vermicomposts (Humus UP, Humus Active), extracts of marine algae (BF Quality) and of terrestrial plants (BF Arnin), a product derived from yeast (Vinassa) and Tytanit. The specific biological effects of the preparations used in the sour cherry nursery for each morphological feature are presented in this paper in graphical form. A beneficial effect on the increase in the number of lateral shoots and the increase in their length was produced by the use of such products as: Micosat, Humus UP, Humus Active + Aktywit PM and Vinassa. The most effective in this respect was BF Amin.展开更多
基金supported by "973 Program" (Grant No. 2011CB808800)National Natural Science Foundation of China (Grant Nos. 40830212,40921062,41172312)+2 种基金Doctoral Fund of Ministry of Education of China (Grant No. 200804910503)Fund of State Key Laboratory of Biogeology and Environmental Geology(Grant No. BGEG0802)Scientific and Technological Project of Jiangxi (Grant No. GJJ10623)
文摘Carbonate carbon isotope (δ^13Ccarb) has received considerable attention in the Permian-Triassic transition for its rapid negative shift coinciding with the great end-Permian mass extinction event. The mechanism has long been debated for such a c~ δ^13Ccarb negative excursion through the end-Permian crisis and subsequent large perturbations in the entire Early Triassic. A δ^13Ccarb depth gradient is observed at the Permian-Triassic boundary sections of different water-depths, i.e., the Yangou, Meishan, and Shangsi sections, and such a large δ^13Ccarb-depth gradient near the end-Permian mass extinction horizon is believed to result from a stratified Paleotethys Ocean with widespread anoxic/euxinic deep water. The evolution of δ^13Ccarb-depth gradient com- bined with paleontological and geochemical data suggests that abundant cyanobacteria and vigorous biological pump in the immediate aftermath of the end-Permian extinction would be the main cause of the large δ^13Ccarb-depth gradient, and the enhanced continental weathering with the mass extinction on land provides a mass amount of nutriment for the flourishing cyanobacteria. Photic zone anoxia/euxinia from the onset of chemocline upward excursion might be the direct cause for the mass extinction whereas the instability of chemocline in the stratified Early Triassic ocean would be the reason for the delayed and involuted biotic recovery.
基金supported by the project UGC-MRP No.F.No.-39-258/2010(SF),UGC,Government of India,New Delhi
文摘Progeny studies of Jatropha curcas and Pongamia pinnata were carried with respect to bioproductivity,pod and seed characters which is one of the selection methods in tree improvement programmes. Variations in bioproductivity and biodiesel parameters of both the plants were compared every 6 months for 4 years of investigation and analyzed by analysis of variance and correlation coefficient by Pearson's method using software Graphpad instat 3.06(for Windows and Mac). P. pinnata has better germination rate(71.4 %), 100 pod weight(PW)(311.59 g) and 100 seed weight(SW)(173.46 g) as compared to J. curcas for germination rate(43.2 %), 100 PW(111.29 g) and 100 SW(67.46 g). P. pinnata has strong correlation for plant height to canopy growth(CG)(0.948), collar diameter(CD)(0.994), number of branches per plant(NBP)(0.995) and to number of leaves per branch(NLB)(0.862) as compared to J.curcas which showed good correlation among plant height to CG(0.976), CD(0.970), NBP(0.988), NLB(0.920) and to number of pods per branch(0.657). However, J. curcas depicted negative correlation for pod breadth to seed length(SL)(-0.447), seed breadth(-0.248) and to seed thickness(ST)(-0.364) and among the 100 PW to SL(-0.199), ST(-0.220) and to 100 SW(-0.704). About 4 kg of P. pinnata seeds were required for each liter of crude oil which yields896 ml of biodiesel on transesterification as compared to5.66 kg of J. curcas seeds for a liter of crude oil, producing about 663 ml of biodiesel. The quality of biodiesel meets the major specification of American Society for Testing and Materials(ASTM) standards for biodiesel. The crude glycerin and seed cake obtained as byproduct during biodiesel production were also measured which can be purified and used in composting, animal feeds, pharmaceuticals and cosmetic industries.
文摘The problem of biogenic income from rocks into a water ecosystem and of their use by hydrobionts is considered by the example of Lake Baikal biogeocenoses. A complex interreaction of stony material and Baikal water occurs on the stony littoral of Lake Baikal with an active participation of benthic and planktonic hydrobionts. Biogeochemical processes enable income of biophile elements providing productivity of stony littoral and hydrobionts biodiversity. A particular role in the littoral zone belongs to symbiotic organisms: lichens and sponges. They extract from the tocks a wide spectrum of macro- and micro- elements including phosphorus, fixe nitrogen and consume carbon. Biodiversity and bioproductivity of stony littoral depend on the diversity of petrographic composition of the rocks and on their geochemical peculiarities. Increase of anthropogenic impact onto the stony littoral manifested by income of biogenic elements and alien microbial cenosis flow results in degradation of primary aquatic biogeocenoses.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)its Collaborative Research and Training Experience(CREATE)program on Persistent,Emerging,and Organic Pollution in the Environment(PEOPLE)+2 种基金the Canada Foundation for Innovation(CFI)the Canada Research Chair(CRC)Programthe Banting Postdoctoral Fellowship(BPF-186562)
文摘The productivity and health of our ocean hold some good solutions to the world’s challenges in socio-economy.However,climate change and waste discharge are changing the marine capacity to buffer human impacts,further challenging the marine industry,primarily in offshore oil and gas,shipping,and fishery operations.These encourage the blue economy,a sustainable development approach to utilize marine resources.Petroleum microbiology dealing with microbes that can respond,degrade,and alter crude oils,offers an unprecedented opportunity to achieve the knowledge-and science-based blue economy.However,the new-era petroleum microbiology for supporting the blue economy has yet to be systematically discussed.This review introduces the climate change impacts on key marine industrial sectors,highlights the critical role of advanced petroleum microbiology in supporting sustainable development,and offers insight into the challenges and future research opportunities in availing of petroleum microbiology for benefiting our marine environment and responsible economic growth.
文摘The study was conducted in an organic nursery of sour cherry cultivars "Debreceni Botermo" and "Sabina" in the years 2010 and 2011. Cherry trees grafted on Mahaleb (Prunus mahaleb L.) seedlings were grown at a spacing of 25 crn × 1.0 m. In the nursery, an assessment was carried out of the effect of various biopreparations on such growth characteristics as the thickness and height of the maidens, the formation of lateral shoots and the total increase in their length. The control trees were not treated at all, but fertilized with an NPK fertilizer only (second control). To stimulate growth, use was made of granular manure, mycorrhizal fungi in the form of the preparation Micosat, humic preparations or so-called vermicomposts (Humus UP, Humus Active), extracts of marine algae (BF Quality) and of terrestrial plants (BF Arnin), a product derived from yeast (Vinassa) and Tytanit. The specific biological effects of the preparations used in the sour cherry nursery for each morphological feature are presented in this paper in graphical form. A beneficial effect on the increase in the number of lateral shoots and the increase in their length was produced by the use of such products as: Micosat, Humus UP, Humus Active + Aktywit PM and Vinassa. The most effective in this respect was BF Amin.