With the growing importance of optical techniques in medical diagnosis and treatment,there exists a pressing need to develop and optimize materials platform for biophotonic applications.Particularly,the design of bioc...With the growing importance of optical techniques in medical diagnosis and treatment,there exists a pressing need to develop and optimize materials platform for biophotonic applications.Particularly,the design of biocompatible and biodegradable materials with desired optical,mechanical,chemical,and biological properties is required to enable clinically relevant biophotonic devices for translating in vitro optical techniques into in situ and in vivo use.This technological trend propels the development of natural and synthetic polymeric biomaterials to replace traditional brittle,nondegradable silica glass based optical materials.In this review,we present an overview of the advances in polymeric optical material development,optical device design and fabrication techniques,and the accompanying applications to imaging,sensing and phototherapy.展开更多
Terahertz(THz)technology offers novel opportunities in biology and medicine,thanks to the unique features of THzwave interactions with tissues and cells.Among them,we particularly notice strong sensitivity of THz wave...Terahertz(THz)technology offers novel opportunities in biology and medicine,thanks to the unique features of THzwave interactions with tissues and cells.Among them,we particularly notice strong sensitivity of THz waves to the tissue water,as a medium for biochemical reactions and a main endogenous marker for THz spectroscopy and imaging.Tissues of the brain have an exceptionally high content of water.This factor,along with the features of the structural organization and biochemistry of neuronal and glial tissues,makes the brain an exciting subject to study in the THz range.In this paper,progress and prospects of THz technology in neurodiagnostics are overviewed,including diagnosis of neurodegenerative disease,myelin deficit,tumors of the central nervous system(with an emphasis on brain gliomas),and traumatic brain injuries.Fundamental and applied challenges in study of the THz-wave–brain tissue interactions and development of the THz biomedical tools and systems for neurodiagnostics are discussed.展开更多
Optoacoustics provides a unique set of capabilities for bioimaging,associated with the intrinsic combination of ultrasound-and light-related advantages,such as high spatial and temporal resolution as well as powerful ...Optoacoustics provides a unique set of capabilities for bioimaging,associated with the intrinsic combination of ultrasound-and light-related advantages,such as high spatial and temporal resolution as well as powerful spectrally enriched imaging contrast in biological tissues.We demonstrate here,for the first time,the acquisition,processing and visualization of five-dimensional optoacoustic data,thus offering unparallel imaging capacities among the current bioimaging modalities.The newly discovered performance is enabled by simultaneous volumetric detection and processing of multispectral data and is further showcased here by attaining time-resolved volumetric blood oxygenation maps in deep human vessels and real-time tracking of contrast agent distribution in a murine model in vivo.展开更多
Broad and safe access to ultrafast laser technology has been hindered by the absence of optical fiber-delivered pulses with tunable central wavelength,pulse repetition rate,and pulse width in the picosecond–femtoseco...Broad and safe access to ultrafast laser technology has been hindered by the absence of optical fiber-delivered pulses with tunable central wavelength,pulse repetition rate,and pulse width in the picosecond–femtosecond regime.To address this long-standing obstacle,we developed a reliable accessory for femtosecond ytterbium fiber chirped pulse amplifiers,termed a fiber-optic nonlinear wavelength converter(FNWC),as an adaptive optical source for the emergent field of femtosecond biophotonics.This accessory empowers the fixed-wavelength laser to produce fiber-delivered∼20 nJ pulses with central wavelength across 950 to 1150 nm,repetition rate across 1 to 10 MHz,and pulse width across 40 to 400 fs,with a long-term stability of>2000 h.As a prototypical label-free application in biology and medicine,we demonstrate the utility of FNWC in real-time intravital imaging synergistically integrated with modern machine learning and largescale fluorescence lifetime imaging microscopy.展开更多
Biophotonics and laser medicine are very dynamic and continuously increasing fields ecologically as well as economically. Direct communication with medical doctors is necessary to identify specific requests and unmet ...Biophotonics and laser medicine are very dynamic and continuously increasing fields ecologically as well as economically. Direct communication with medical doctors is necessary to identify specific requests and unmet needs. Information on innovative, new or renewed techniques is necessary to design medical devices for introduction into clinical application and finally to become established after positive clinical trials as well as medical approval. The long-term endurance in developing light based innovative clinical concepts and devices are described based on the Munich experience. Fluorescence technologies for laboratory medicine to improve non- invasive diagnosis or for online monitoring are described according with new approaches in improving photody- namic therapeutic aspects related to immunology. Regard- ing clinically related thermal laser applications, the introduction of new laser wavelengths and laser parameters showed potential in the treatment of varicose veins as well as in lithotripsy. Such directly linked research and development are possible when researchers and medical doctors perform their daily work in immediate vicinity, thus have the possibility to share their ideas in meetings by day.展开更多
基金This work was supported in part by National Institutes of Health awards(EB024829,CA182670,AR072731).
文摘With the growing importance of optical techniques in medical diagnosis and treatment,there exists a pressing need to develop and optimize materials platform for biophotonic applications.Particularly,the design of biocompatible and biodegradable materials with desired optical,mechanical,chemical,and biological properties is required to enable clinically relevant biophotonic devices for translating in vitro optical techniques into in situ and in vivo use.This technological trend propels the development of natural and synthetic polymeric biomaterials to replace traditional brittle,nondegradable silica glass based optical materials.In this review,we present an overview of the advances in polymeric optical material development,optical device design and fabrication techniques,and the accompanying applications to imaging,sensing and phototherapy.
基金The work was supported by the Russian Science Foundation,Project#22-22-00596.
文摘Terahertz(THz)technology offers novel opportunities in biology and medicine,thanks to the unique features of THzwave interactions with tissues and cells.Among them,we particularly notice strong sensitivity of THz waves to the tissue water,as a medium for biochemical reactions and a main endogenous marker for THz spectroscopy and imaging.Tissues of the brain have an exceptionally high content of water.This factor,along with the features of the structural organization and biochemistry of neuronal and glial tissues,makes the brain an exciting subject to study in the THz range.In this paper,progress and prospects of THz technology in neurodiagnostics are overviewed,including diagnosis of neurodegenerative disease,myelin deficit,tumors of the central nervous system(with an emphasis on brain gliomas),and traumatic brain injuries.Fundamental and applied challenges in study of the THz-wave–brain tissue interactions and development of the THz biomedical tools and systems for neurodiagnostics are discussed.
基金The research leading to these results has received funding from the European Research Council under grant agreement ERC-2010-StG-260991
文摘Optoacoustics provides a unique set of capabilities for bioimaging,associated with the intrinsic combination of ultrasound-and light-related advantages,such as high spatial and temporal resolution as well as powerful spectrally enriched imaging contrast in biological tissues.We demonstrate here,for the first time,the acquisition,processing and visualization of five-dimensional optoacoustic data,thus offering unparallel imaging capacities among the current bioimaging modalities.The newly discovered performance is enabled by simultaneous volumetric detection and processing of multispectral data and is further showcased here by attaining time-resolved volumetric blood oxygenation maps in deep human vessels and real-time tracking of contrast agent distribution in a murine model in vivo.
基金support from the National Institutes of Health,U.S.Department of Health and Human Services(Grant No.R01 CA241618)J.E.S.and R.R.I were supported by NIBIB/NIH(Award No.T32EB019944).
文摘Broad and safe access to ultrafast laser technology has been hindered by the absence of optical fiber-delivered pulses with tunable central wavelength,pulse repetition rate,and pulse width in the picosecond–femtosecond regime.To address this long-standing obstacle,we developed a reliable accessory for femtosecond ytterbium fiber chirped pulse amplifiers,termed a fiber-optic nonlinear wavelength converter(FNWC),as an adaptive optical source for the emergent field of femtosecond biophotonics.This accessory empowers the fixed-wavelength laser to produce fiber-delivered∼20 nJ pulses with central wavelength across 950 to 1150 nm,repetition rate across 1 to 10 MHz,and pulse width across 40 to 400 fs,with a long-term stability of>2000 h.As a prototypical label-free application in biology and medicine,we demonstrate the utility of FNWC in real-time intravital imaging synergistically integrated with modern machine learning and largescale fluorescence lifetime imaging microscopy.
文摘Biophotonics and laser medicine are very dynamic and continuously increasing fields ecologically as well as economically. Direct communication with medical doctors is necessary to identify specific requests and unmet needs. Information on innovative, new or renewed techniques is necessary to design medical devices for introduction into clinical application and finally to become established after positive clinical trials as well as medical approval. The long-term endurance in developing light based innovative clinical concepts and devices are described based on the Munich experience. Fluorescence technologies for laboratory medicine to improve non- invasive diagnosis or for online monitoring are described according with new approaches in improving photody- namic therapeutic aspects related to immunology. Regard- ing clinically related thermal laser applications, the introduction of new laser wavelengths and laser parameters showed potential in the treatment of varicose veins as well as in lithotripsy. Such directly linked research and development are possible when researchers and medical doctors perform their daily work in immediate vicinity, thus have the possibility to share their ideas in meetings by day.