A comprehensive review on bio-inspired fish robots has been done in this article with an enhanced focus on swimming styles,actuators,hydrodynamics,kinematic-dynamic modeling,and controllers.Swimming styles such as bod...A comprehensive review on bio-inspired fish robots has been done in this article with an enhanced focus on swimming styles,actuators,hydrodynamics,kinematic-dynamic modeling,and controllers.Swimming styles such as body and/or caudal fin and median and/or paired fin and their variants are discussed in detail.Literature shows that most fish robots adapt carangiform in body and/or caudal fin type swimming as it gives significant thrust with a maximum speed of 3.7 ms 1 in iSplash-II.Applications of smart or soft actuators to enhance real-time dynamics was studied from literature,and it was found that the robot built with polymer fiber composite material could reach a speed of 0.6 m s However,dynamic modeling is relatively complex,and material selection needs to be explored.The numerical and analytical methods in dynamic modeling have been investigated highlighting merits and demerits.Hydrodynamic parameter estimation through the data-driven model is widely used in offline,however online estimation of the same need to be explored.Classical controllers are frequently used tor navigation and stabilization,which often encounters the linearization problem and hence,can be replaced with the state-of-the-art adaptive and intelligent controller.This article also summarizes the potential research gaps and future scopes.展开更多
Biological inspiration has spawned a wealth of solutions to both mechanical design and control schemes in the efforts to develop agile legged machines. This paper presents a compliant leg mechanism for a small six-leg...Biological inspiration has spawned a wealth of solutions to both mechanical design and control schemes in the efforts to develop agile legged machines. This paper presents a compliant leg mechanism for a small six-legged robot, HITCR-ll, based on abstracted anatomy from insect legs. Kinematic structure, relative proportion of leg segment lengths and actuation system were analyzed in consideration of anatomical structure as well as muscle system of insect legs and desired mobility. A spring based passive compliance mechanism inspired by musculoskeletal structures of biological systems was integrated into distal segment of the leg to soften foot impact on touchdown. In addition, an efficient locomotion planner capable of generating natural movements for the legs during swing phase was proposed. The problem of leg swing was formulated as an optimal control procedure that satisfies a series of locomotion task terms while minimizing a biologically-based objective function, which was solved by a Gauss Pseudospectral Method (GPM) based numerical technique. We applied this swing generation algorithm to both a simulation platform and a robot prototype. Results show that the proposed leg structure and swing planner are able to successfully perform effective swing movements on rugged terrains.展开更多
Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant r...Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant role,which provides the sources of inspiration for designing flapping-wing vehicles.In recent years,due to the development of micro-and meso-scale manufacturing technologies,advances in components technologies have directly led to a progress of smaller Flapping-Wing Nano Air Vehicles(FWNAVs)around gram and sub-gram scales,and these air vehicles have gradually acquired insect-like locomotive strategies and capabilities.This paper will present a selective review of components technologies for ultra-lightweight flapping-wing nano air vehicles under 3 g,which covers the novel propulsion methods such as artificial muscles,flight control mechanisms,and the design paradigms of the insect-inspired wings,with a special focus on the development of the driving technologies based on artificial muscles and the progress of the biomimetic wings.The challenges involved in constructing such small flapping-wing air vehicles and recommendations for several possible future directions in terms of component technology enhancements and overall vehicle performance are also discussed in this paper.This review will provide the essential guidelines and the insights for designing a flapping-wing nano air vehicle with higher performance.展开更多
It is an urgent problem for robots to operate complex tasks with some unknown motion mechanisms caused by the strong coupling of force and motion. However, humans can perform complex tasks well due to their natural ev...It is an urgent problem for robots to operate complex tasks with some unknown motion mechanisms caused by the strong coupling of force and motion. However, humans can perform complex tasks well due to their natural evolution and postnatal training. A novel biomimetic control method based on a human motion mechanism with high movement adaptability is proposed in this paper. The core is to present a novel variable-parameter compliance controller based on human operation mechanisms with an action-planning method derived from optimization by human motion, and the main contribution is to change the parameters of compliance controller according to human operating intention synchronized with humanoid motion;this change could establish a humanoid map between the force and motion for a seven degree-of-freedom redundant manipulator to deal with the unknown motion mechanism in complex tasks, so the redundant manipulator can operate complex tasks with high performance. Sufficient experiments were performed, and the results validated the effectiveness of the proposed algorithm.展开更多
Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish ...Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.展开更多
This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a...This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a pair of pectoral fins,a wire-driven active body covered with soft skin,and a compliant tail.The CPG model consists of four input parameters:the flapping amplitude,the flapping angular velocity,the flapping offset,and the time ratio between the beat phase and the restore phase in flapping.The robot fish is equipped with three infrared sensors mounted on the left,front and right of the robot fish,as well as an inertial measurement unit,from which the surrounding obstacles and moving direction can be sensed.Based on these sensor signals,the closed-loop CPG-based control can drive the robot fish to avoid obstacles and to track designated directions.Four sets of experiments are presented,including avoiding a static obstacle,avoiding a moving obstacle,tracking a designated direction and tracking a designated direction with an obstacle in the path.The experiment results indicated that the presented control strategy worked well and the robot fish can accomplish the obstacle avoidance and direction tracking effectively.展开更多
The cadmium selenide quantum dots (QD) have been synthesized by template-control in an emulsion liquid membrane system. The system consisted of kerosene as solvent, L152 (dialkylene succinimide) as surfactant, N7301 (...The cadmium selenide quantum dots (QD) have been synthesized by template-control in an emulsion liquid membrane system. The system consisted of kerosene as solvent, L152 (dialkylene succinimide) as surfactant, N7301 (trialiphatic amine, Ra, R=C8-C10) as carrier, 0.1 mol/L CdCl2 solution as internal-aqueous phase and H2Se gas as external phase. Additive organic template agent in internal-aqueous phase was necessary to fom CdSe QD. The influence of the nature of template and its concentration on sizes of the formed CdSe QD has also been studied. Transmission electron microscopy showed that the sizes of the products could be controlled down to 3-4 nm. X-ray diffraction analysis revealed that the crystals had cubic structure. The formation process and the optical properties of CdSe QD have also been presented.展开更多
Bilateral rehabilitation systems with bilateral or unilateral assistive robots have been developed for hemiplegia patients to recover their one-side paralysis.However,the compliant robotic assistance to promote bilate...Bilateral rehabilitation systems with bilateral or unilateral assistive robots have been developed for hemiplegia patients to recover their one-side paralysis.However,the compliant robotic assistance to promote bilateral inter-limb coordination remains a challenge that should be addressed.In this paper,a biomimetic variable stiffness modulation strategy for the Variable Stiffness Actuator(VSA)integrated robotic is proposed to improve bilateral limb coordination and promote bilateral motor skills relearning.An Electromyography(EMG)-driven synergy reference stiffness estimation model of the upper limb elbow joint is developed to reproduce the muscle synergy effect on the affected side limb by independent real-time stiffness control.Additionally,the bilateral impedance control is incorporated for realizing compliant patient-robot interaction.Preliminary experiments were carried out to evaluate the tracking performance and investigate the multiple task intensities’influence on bilateral motor skills relearning.Experimental results evidence the proposed method could enable bilateral motor task skills relearning with wide-range task intensities and further promote bilateral inter-limb coordination.展开更多
文摘A comprehensive review on bio-inspired fish robots has been done in this article with an enhanced focus on swimming styles,actuators,hydrodynamics,kinematic-dynamic modeling,and controllers.Swimming styles such as body and/or caudal fin and median and/or paired fin and their variants are discussed in detail.Literature shows that most fish robots adapt carangiform in body and/or caudal fin type swimming as it gives significant thrust with a maximum speed of 3.7 ms 1 in iSplash-II.Applications of smart or soft actuators to enhance real-time dynamics was studied from literature,and it was found that the robot built with polymer fiber composite material could reach a speed of 0.6 m s However,dynamic modeling is relatively complex,and material selection needs to be explored.The numerical and analytical methods in dynamic modeling have been investigated highlighting merits and demerits.Hydrodynamic parameter estimation through the data-driven model is widely used in offline,however online estimation of the same need to be explored.Classical controllers are frequently used tor navigation and stabilization,which often encounters the linearization problem and hence,can be replaced with the state-of-the-art adaptive and intelligent controller.This article also summarizes the potential research gaps and future scopes.
基金the National Natural Science Foundation of China,the self-managed project of State Key Laboratory of Robotics and System in Harbin Institute of Technology
文摘Biological inspiration has spawned a wealth of solutions to both mechanical design and control schemes in the efforts to develop agile legged machines. This paper presents a compliant leg mechanism for a small six-legged robot, HITCR-ll, based on abstracted anatomy from insect legs. Kinematic structure, relative proportion of leg segment lengths and actuation system were analyzed in consideration of anatomical structure as well as muscle system of insect legs and desired mobility. A spring based passive compliance mechanism inspired by musculoskeletal structures of biological systems was integrated into distal segment of the leg to soften foot impact on touchdown. In addition, an efficient locomotion planner capable of generating natural movements for the legs during swing phase was proposed. The problem of leg swing was formulated as an optimal control procedure that satisfies a series of locomotion task terms while minimizing a biologically-based objective function, which was solved by a Gauss Pseudospectral Method (GPM) based numerical technique. We applied this swing generation algorithm to both a simulation platform and a robot prototype. Results show that the proposed leg structure and swing planner are able to successfully perform effective swing movements on rugged terrains.
基金supported by the National Natural Science Foundation of China(Nos.52175277,51905431).
文摘Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant role,which provides the sources of inspiration for designing flapping-wing vehicles.In recent years,due to the development of micro-and meso-scale manufacturing technologies,advances in components technologies have directly led to a progress of smaller Flapping-Wing Nano Air Vehicles(FWNAVs)around gram and sub-gram scales,and these air vehicles have gradually acquired insect-like locomotive strategies and capabilities.This paper will present a selective review of components technologies for ultra-lightweight flapping-wing nano air vehicles under 3 g,which covers the novel propulsion methods such as artificial muscles,flight control mechanisms,and the design paradigms of the insect-inspired wings,with a special focus on the development of the driving technologies based on artificial muscles and the progress of the biomimetic wings.The challenges involved in constructing such small flapping-wing air vehicles and recommendations for several possible future directions in terms of component technology enhancements and overall vehicle performance are also discussed in this paper.This review will provide the essential guidelines and the insights for designing a flapping-wing nano air vehicle with higher performance.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFB1305300)the Key Program of the National Natural Science Foundation of China(Grant Nos.61733001,U1713215)the National Natural Science Foundation of China(Grant Nos.61573063,61873039)
文摘It is an urgent problem for robots to operate complex tasks with some unknown motion mechanisms caused by the strong coupling of force and motion. However, humans can perform complex tasks well due to their natural evolution and postnatal training. A novel biomimetic control method based on a human motion mechanism with high movement adaptability is proposed in this paper. The core is to present a novel variable-parameter compliance controller based on human operation mechanisms with an action-planning method derived from optimization by human motion, and the main contribution is to change the parameters of compliance controller according to human operating intention synchronized with humanoid motion;this change could establish a humanoid map between the force and motion for a seven degree-of-freedom redundant manipulator to deal with the unknown motion mechanism in complex tasks, so the redundant manipulator can operate complex tasks with high performance. Sufficient experiments were performed, and the results validated the effectiveness of the proposed algorithm.
基金supported by the National Key Research and Development Program(Grant No.2020YFB1313200,2022YFC2805200)the National Natural Science Foundation of China(Grant No.52001260,52201381)Ningbo Natural Science Foundation(Grant No.2022J062).
文摘Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(class A)(Grant No.XDA22040203)the Fundamental Research Funds for the Central Universities(Grant No.2019XX01)+1 种基金GDNRC[2020]031the Natural Science Foundation of Guangdong Province(Grant No.2020A1515010621).
文摘This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a pair of pectoral fins,a wire-driven active body covered with soft skin,and a compliant tail.The CPG model consists of four input parameters:the flapping amplitude,the flapping angular velocity,the flapping offset,and the time ratio between the beat phase and the restore phase in flapping.The robot fish is equipped with three infrared sensors mounted on the left,front and right of the robot fish,as well as an inertial measurement unit,from which the surrounding obstacles and moving direction can be sensed.Based on these sensor signals,the closed-loop CPG-based control can drive the robot fish to avoid obstacles and to track designated directions.Four sets of experiments are presented,including avoiding a static obstacle,avoiding a moving obstacle,tracking a designated direction and tracking a designated direction with an obstacle in the path.The experiment results indicated that the presented control strategy worked well and the robot fish can accomplish the obstacle avoidance and direction tracking effectively.
基金Project supported by the National Natural Science Foundation of China (No. 20071025) and the Nano-foundation of Shanghai (Nos. 0259nm021 0114nm004).
文摘The cadmium selenide quantum dots (QD) have been synthesized by template-control in an emulsion liquid membrane system. The system consisted of kerosene as solvent, L152 (dialkylene succinimide) as surfactant, N7301 (trialiphatic amine, Ra, R=C8-C10) as carrier, 0.1 mol/L CdCl2 solution as internal-aqueous phase and H2Se gas as external phase. Additive organic template agent in internal-aqueous phase was necessary to fom CdSe QD. The influence of the nature of template and its concentration on sizes of the formed CdSe QD has also been studied. Transmission electron microscopy showed that the sizes of the products could be controlled down to 3-4 nm. X-ray diffraction analysis revealed that the crystals had cubic structure. The formation process and the optical properties of CdSe QD have also been presented.
文摘Bilateral rehabilitation systems with bilateral or unilateral assistive robots have been developed for hemiplegia patients to recover their one-side paralysis.However,the compliant robotic assistance to promote bilateral inter-limb coordination remains a challenge that should be addressed.In this paper,a biomimetic variable stiffness modulation strategy for the Variable Stiffness Actuator(VSA)integrated robotic is proposed to improve bilateral limb coordination and promote bilateral motor skills relearning.An Electromyography(EMG)-driven synergy reference stiffness estimation model of the upper limb elbow joint is developed to reproduce the muscle synergy effect on the affected side limb by independent real-time stiffness control.Additionally,the bilateral impedance control is incorporated for realizing compliant patient-robot interaction.Preliminary experiments were carried out to evaluate the tracking performance and investigate the multiple task intensities’influence on bilateral motor skills relearning.Experimental results evidence the proposed method could enable bilateral motor task skills relearning with wide-range task intensities and further promote bilateral inter-limb coordination.