Combining the principle of antibody concentration with the idea of biological evolution, this paper proposes an adaptive target detection algorithm for cloud service security based on Bio-Inspired Performance Evaluati...Combining the principle of antibody concentration with the idea of biological evolution, this paper proposes an adaptive target detection algorithm for cloud service security based on Bio-Inspired Performance Evaluation Process Algebra(Bio-PEPA). The formal modelling of cloud services is formally modded by Bio-PEPA and the modules are transformed between cloud service internal structures and various components. Then, the security adaptive target detection algorithm of cloud service is divided into two processes, the short-term optimal action selection process which selects the current optimal detective action through the iterative operation of the expected function and the adaptive function, and the long-term detective strategy realized through the updates and eliminations of action planning table. The combination of the two processes reflects the self-adaptability of cloud service system to target detection. The simulating test detects three different kinds of security risks and then analyzes the relationship between the numbers of components with time in the service process. The performance of this method is compared with random detection method and three anomaly detection methods by the cloud service detection experiment. The detection time of this method is 50.1% of three kinds of detection methods and 86.3% of the random detection method. The service success rate is about 15% higher than that of random detection methods. The experimental results show that the algorithm has good time performance and high detection hit rate.展开更多
基金Supported by the National Natural Science Foundation of China(61202458,61403109)the Natural Science Foundation of Heilongjiang Province of China(F2017021)and the Harbin Science and Technology Innovation Research Funds(2016RAQXJ036)
文摘Combining the principle of antibody concentration with the idea of biological evolution, this paper proposes an adaptive target detection algorithm for cloud service security based on Bio-Inspired Performance Evaluation Process Algebra(Bio-PEPA). The formal modelling of cloud services is formally modded by Bio-PEPA and the modules are transformed between cloud service internal structures and various components. Then, the security adaptive target detection algorithm of cloud service is divided into two processes, the short-term optimal action selection process which selects the current optimal detective action through the iterative operation of the expected function and the adaptive function, and the long-term detective strategy realized through the updates and eliminations of action planning table. The combination of the two processes reflects the self-adaptability of cloud service system to target detection. The simulating test detects three different kinds of security risks and then analyzes the relationship between the numbers of components with time in the service process. The performance of this method is compared with random detection method and three anomaly detection methods by the cloud service detection experiment. The detection time of this method is 50.1% of three kinds of detection methods and 86.3% of the random detection method. The service success rate is about 15% higher than that of random detection methods. The experimental results show that the algorithm has good time performance and high detection hit rate.