针对目标与背景两类图像模式识别问题,在已有的特征选择方法基础上,提出了一种新颖的基于免疫分子编码机理的图像特征选择方法(Immune Antibody Construction Algorithm,IACA).该方法借鉴生物免疫系统的抗体分子编码机理,在对样本进行...针对目标与背景两类图像模式识别问题,在已有的特征选择方法基础上,提出了一种新颖的基于免疫分子编码机理的图像特征选择方法(Immune Antibody Construction Algorithm,IACA).该方法借鉴生物免疫系统的抗体分子编码机理,在对样本进行参数估计情况下,提出熵度量单个特征对于目标和背景的识别敏感度;从集合的角度研究并且定义了特征之间的包含和互补关系;并且基于组成抗体分子氨基酸结合能量最小原则,提出了关于图像目标的免疫抗体构建规则;最终实现了寻找最优特征子集的算法IACA,该特征子集的维数通过算法自动获得无需人为设定,选择结果为目标的"免疫抗体",能很好的从背景中识别目标.利用归纳法证明了用IACA得到的特征子集的最优性.与其他特征选择方法比较,测试结果显示该算法具有较低的计算复杂度和错误识别率,表明了该方法的优越性和先进性.展开更多
文摘针对目标与背景两类图像模式识别问题,在已有的特征选择方法基础上,提出了一种新颖的基于免疫分子编码机理的图像特征选择方法(Immune Antibody Construction Algorithm,IACA).该方法借鉴生物免疫系统的抗体分子编码机理,在对样本进行参数估计情况下,提出熵度量单个特征对于目标和背景的识别敏感度;从集合的角度研究并且定义了特征之间的包含和互补关系;并且基于组成抗体分子氨基酸结合能量最小原则,提出了关于图像目标的免疫抗体构建规则;最终实现了寻找最优特征子集的算法IACA,该特征子集的维数通过算法自动获得无需人为设定,选择结果为目标的"免疫抗体",能很好的从背景中识别目标.利用归纳法证明了用IACA得到的特征子集的最优性.与其他特征选择方法比较,测试结果显示该算法具有较低的计算复杂度和错误识别率,表明了该方法的优越性和先进性.