以产氢量为主要实验指标,基于响应面法BBD模型研究不同影响因素对生物质秸秆酶解光合产氢的影响,考察光合产氢过程中不同影响因素间交互作用的显著性,并对玉米秸秆酶解光合生物制氢工艺进行优化。研究结果表明:p H值、温度和纤维素酶量...以产氢量为主要实验指标,基于响应面法BBD模型研究不同影响因素对生物质秸秆酶解光合产氢的影响,考察光合产氢过程中不同影响因素间交互作用的显著性,并对玉米秸秆酶解光合生物制氢工艺进行优化。研究结果表明:p H值、温度和纤维素酶量三因素中,p H值对玉米秸秆酶解光合产氢的影响最大;多因素交互作用中,p H值和温度的交互作用最为显著;采用BBD模型获得的最佳产氢条件为:p H值5.43,温度30.8℃,纤维素酶量70 mg/g,最大产氢量149.39 m L,最大产氢率29.88 m L/g。通过实验对模型进行验证,实际最大产氢量达155.52 m L,产氢率31.11 m L/g,和预测值的误差为4.1%,说明该模型具有较好的拟合性。展开更多
Acid, alkali, heat-shock, KNO3 and control pretreatment methods applied to anaerobic sludge were evaluated for their ability to selectively enrich the marine hydrogen-producing mixed microflora. Sea-water culture medi...Acid, alkali, heat-shock, KNO3 and control pretreatment methods applied to anaerobic sludge were evaluated for their ability to selectively enrich the marine hydrogen-producing mixed microflora. Sea-water culture medium was used as the substrate. The hydrogen yield of pretreated microflora was higher than that of the un-pretreated control (P < 0.05). Among the pretreatment methods studied, heat-shock pretreatment yielded the greatest hydrogen production, which was 14.6 times that of the control. When the effect of initial pH on hydrogen production of heat-shock pretreated samples was studied, hydrogen was produced over the entire pH range (pH 4 - 10). The hydrogen yield peaked at initial pH 8 (79 mL/g sucrose) and then steadily decreased as the initial pH increased. Sucrose con-sumption was high at neutral initial pH. During the process of hydrogen production, pH decreased gradually, which indicated that the acquired microflora consisted of acidogenic bacteria.展开更多
文摘以产氢量为主要实验指标,基于响应面法BBD模型研究不同影响因素对生物质秸秆酶解光合产氢的影响,考察光合产氢过程中不同影响因素间交互作用的显著性,并对玉米秸秆酶解光合生物制氢工艺进行优化。研究结果表明:p H值、温度和纤维素酶量三因素中,p H值对玉米秸秆酶解光合产氢的影响最大;多因素交互作用中,p H值和温度的交互作用最为显著;采用BBD模型获得的最佳产氢条件为:p H值5.43,温度30.8℃,纤维素酶量70 mg/g,最大产氢量149.39 m L,最大产氢率29.88 m L/g。通过实验对模型进行验证,实际最大产氢量达155.52 m L,产氢率31.11 m L/g,和预测值的误差为4.1%,说明该模型具有较好的拟合性。
基金Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA05Z112)
文摘Acid, alkali, heat-shock, KNO3 and control pretreatment methods applied to anaerobic sludge were evaluated for their ability to selectively enrich the marine hydrogen-producing mixed microflora. Sea-water culture medium was used as the substrate. The hydrogen yield of pretreated microflora was higher than that of the un-pretreated control (P < 0.05). Among the pretreatment methods studied, heat-shock pretreatment yielded the greatest hydrogen production, which was 14.6 times that of the control. When the effect of initial pH on hydrogen production of heat-shock pretreated samples was studied, hydrogen was produced over the entire pH range (pH 4 - 10). The hydrogen yield peaked at initial pH 8 (79 mL/g sucrose) and then steadily decreased as the initial pH increased. Sucrose con-sumption was high at neutral initial pH. During the process of hydrogen production, pH decreased gradually, which indicated that the acquired microflora consisted of acidogenic bacteria.