Medicinal plants, vegetables and fruits are the sources of huge number of bioactive lead/scaffolds with therapeutic and nutraceutical importance. Bioautography is a means of target-directed isolation of active molecul...Medicinal plants, vegetables and fruits are the sources of huge number of bioactive lead/scaffolds with therapeutic and nutraceutical importance. Bioautography is a means of target-directed isolation of active molecules on chromatogram. Organic solvents employed in chromatographic separation process can be completely removed before biological detection because these solvents cause inactivation of enzymes and/or death of living organisms. They offer a rapid and easy identification of bioactive lead/scaffolds in complex matrices of plant extracts. Bioautography is a technique to isolate hit(s)/lead(s) by employing a suitable chromatographic process followed by a biological detection system. This review critically describes the methodologies to identify antimicrobial, antioxidant, enzyme inhibitor lead/scaffolds by employing bioautography. A significant number of examples have been incorporated to authenticate the methodologies.展开更多
Presented in several types of food, bioactive amines are described as organic bases of low molecular weight. They have vasoactive, psychoactive and toxicological characteristics and constitute a potential health risk....Presented in several types of food, bioactive amines are described as organic bases of low molecular weight. They have vasoactive, psychoactive and toxicological characteristics and constitute a potential health risk. The concentration of amines formed in foods depends on the type of microorganisms present, the action of decarboxylase enzymes produced by microorganisms on specific amino acids and favorable conditions for enzymatic activity. The presence of these chemical metabolites has been suggested as a quality indicator in routine analyzes for food production and marketing monitoring. The detection of bioactive amines can be performed by chromatographic methods, fluorometric and enzymatic kits. Bioactive amine formation can be prevented mainly through the adoption of good manufacturing practices, but the industry can also use other methods such as temperature control in the production chain, modified atmosphere packaging and food irradiation. This review aims to address the formation of bioactive amines in foods, emphasizing the formation and classification of these metabolites, aspects related to health, acceptable limits, detection methods and control methods used in the industry to ensure food safety and quality. The success of this approach is linked to the importance of bioactive amines as quality indicators, as well as the discussion on the development of methodologies for determining these substances and discussion of acceptable parameters in food.展开更多
文摘Medicinal plants, vegetables and fruits are the sources of huge number of bioactive lead/scaffolds with therapeutic and nutraceutical importance. Bioautography is a means of target-directed isolation of active molecules on chromatogram. Organic solvents employed in chromatographic separation process can be completely removed before biological detection because these solvents cause inactivation of enzymes and/or death of living organisms. They offer a rapid and easy identification of bioactive lead/scaffolds in complex matrices of plant extracts. Bioautography is a technique to isolate hit(s)/lead(s) by employing a suitable chromatographic process followed by a biological detection system. This review critically describes the methodologies to identify antimicrobial, antioxidant, enzyme inhibitor lead/scaffolds by employing bioautography. A significant number of examples have been incorporated to authenticate the methodologies.
文摘Presented in several types of food, bioactive amines are described as organic bases of low molecular weight. They have vasoactive, psychoactive and toxicological characteristics and constitute a potential health risk. The concentration of amines formed in foods depends on the type of microorganisms present, the action of decarboxylase enzymes produced by microorganisms on specific amino acids and favorable conditions for enzymatic activity. The presence of these chemical metabolites has been suggested as a quality indicator in routine analyzes for food production and marketing monitoring. The detection of bioactive amines can be performed by chromatographic methods, fluorometric and enzymatic kits. Bioactive amine formation can be prevented mainly through the adoption of good manufacturing practices, but the industry can also use other methods such as temperature control in the production chain, modified atmosphere packaging and food irradiation. This review aims to address the formation of bioactive amines in foods, emphasizing the formation and classification of these metabolites, aspects related to health, acceptable limits, detection methods and control methods used in the industry to ensure food safety and quality. The success of this approach is linked to the importance of bioactive amines as quality indicators, as well as the discussion on the development of methodologies for determining these substances and discussion of acceptable parameters in food.