Marine resources and industry have become one of the most important pillars in economic development all over the world.However,corrosion of materials is always the most serious problem to the infrastructure and equipm...Marine resources and industry have become one of the most important pillars in economic development all over the world.However,corrosion of materials is always the most serious problem to the infrastructure and equipment served in marine environment.Researchers have found that microbiologically influenced corrosion(MIC)and marine bio-fouling are two main mechanisms of marine corrosions due to the complicated marine environment and marine organisms.This article summarized the latest research progress about these two mechanisms and indicated that both MIC and marine bio-fouling are closely related to the biofilms on material surfaces formed by the marine microorganisms and their metabolites.As a result,to prevent the occurrence of MIC and bio-fouling,it is important to control the microorganisms in biofilms or prevent the adhesion and formation of biofilms.The traditional method of using chemical bactericide or antifoulant faces the problems of pollution and microorganism resistance.This article introduced four research approaches about the new tendency of applying new materials and technologies to cooperate with traditional chemicals to achieve better and longer effects with lower environment pollution through synergistic actions.Finally,some future research tendencies were proposed for whole marine anti-corrosion and anti-fouling areas.展开更多
Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of ...Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.展开更多
为了提高饮用水水质,将气浮、生物陶粒与膜进行有机组合,开发出"气浮-生物陶粒-膜"一体化工艺。采用该工艺处理高藻、低浊、有机物浓度较高的微污染湖水,对其运行特性进行研究。实验结果表明,该工艺对有机物和藻类均具有良好...为了提高饮用水水质,将气浮、生物陶粒与膜进行有机组合,开发出"气浮-生物陶粒-膜"一体化工艺。采用该工艺处理高藻、低浊、有机物浓度较高的微污染湖水,对其运行特性进行研究。实验结果表明,该工艺对有机物和藻类均具有良好的去除效果,对浊度、色度、COD、氨氮、叶绿素a的平均去除率分别为97.6%、80.6%、69.6%、64.1%和94.4%。另外,该工艺表现出了良好的抗膜污染能力。实验开始时,跨膜压差约为2.2 k Pa;当实验运行至100 d时,跨膜压差仅为4.1 kPa。展开更多
基金supported by the National Key R&D Program of China(2018YFC1105304)the National Natural Science Foundation of China(Grant Nos.51702106)+1 种基金the Natural Science Foundation of Guangdong Province(2016A030308014)China Postdoctoral Science Foundation(Grant Nos.2017M622686,2018T110865).
文摘Marine resources and industry have become one of the most important pillars in economic development all over the world.However,corrosion of materials is always the most serious problem to the infrastructure and equipment served in marine environment.Researchers have found that microbiologically influenced corrosion(MIC)and marine bio-fouling are two main mechanisms of marine corrosions due to the complicated marine environment and marine organisms.This article summarized the latest research progress about these two mechanisms and indicated that both MIC and marine bio-fouling are closely related to the biofilms on material surfaces formed by the marine microorganisms and their metabolites.As a result,to prevent the occurrence of MIC and bio-fouling,it is important to control the microorganisms in biofilms or prevent the adhesion and formation of biofilms.The traditional method of using chemical bactericide or antifoulant faces the problems of pollution and microorganism resistance.This article introduced four research approaches about the new tendency of applying new materials and technologies to cooperate with traditional chemicals to achieve better and longer effects with lower environment pollution through synergistic actions.Finally,some future research tendencies were proposed for whole marine anti-corrosion and anti-fouling areas.
文摘Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.
文摘为了提高饮用水水质,将气浮、生物陶粒与膜进行有机组合,开发出"气浮-生物陶粒-膜"一体化工艺。采用该工艺处理高藻、低浊、有机物浓度较高的微污染湖水,对其运行特性进行研究。实验结果表明,该工艺对有机物和藻类均具有良好的去除效果,对浊度、色度、COD、氨氮、叶绿素a的平均去除率分别为97.6%、80.6%、69.6%、64.1%和94.4%。另外,该工艺表现出了良好的抗膜污染能力。实验开始时,跨膜压差约为2.2 k Pa;当实验运行至100 d时,跨膜压差仅为4.1 kPa。