The Ecological Environment Code,as a significant legal instrument for the evolution of ecological civilization,possesses both substantive and formal dimensions.First,it aims to serve the national ecological civilizati...The Ecological Environment Code,as a significant legal instrument for the evolution of ecological civilization,possesses both substantive and formal dimensions.First,it aims to serve the national ecological civilization strategy.Second,it elucidates potential pathways for legal interpretation,development of legal rules,and promotion of judicial governance,restraining arbitrary behavior and disorder while facilitating systemic cohesion.The compilation of the Ecological Environment Code unfolds through the main threads of substantive and formal logic.By prioritizing conservation,protection,and restoring the natural environment,resource management,pollution prevention,and ecological protection are coordinated,integrating legislation on ecological protection with management of natural resources and pollution prevention to achieve both"harm avoidance"and"beneficial trends."Employing the formal logical main thread of the structure of the relationship between power and rights,we present four types of norms:ex post facto remedy,hazard prevention,risk prevention,and independent value selection.展开更多
Residue Number System (RNS) has proved shaping the Digital Signal Processing (DSP) units into highly parallel, faster and secured entities. The computational complexity of the multiplication process for a RNS based de...Residue Number System (RNS) has proved shaping the Digital Signal Processing (DSP) units into highly parallel, faster and secured entities. The computational complexity of the multiplication process for a RNS based design can be reduced by indulging Logarithmic Number System (LNS). The combination of these unusual number systems forms Residue Logarithmic Number System (RLNS) that provides simple internal architectures. Till date RLNS based processing units are designed for binary logic based circuits. In order to reduce the number of input output signals in a system, the concept of Multiple Valued Logic (MVL) is introduced in literature. In that course of research, this paper uses Tri Valued Logic (TVL) in RLNS technique proposed, to further reduce the chip area and delay value. Thus in this research work three different concepts are proposed, it includes the design of multiplier for RLNS based application for number of bits 8, 16 and 32. Next is the utilization of TVL in the proposed multiplication structure for RLNS based system along with the error correction circuits for the ternary logarithmic and antilogarithmic conversion process. Finally the comparison of the two multiplication schemes with the existing research of multiplier design for RNS based system using booth encoding concepts. It can be found that the proposed technique using TVL saves on an average of about 63% of area occupied and 97% of delay value respectively than the existing technique.展开更多
The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approach...The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the problem is described as much as possible in the tradition and the spirit—and as much as possible by means of the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is analyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productivity, the Monty Hall problem is extended and generalized in parts 3 and 4 to related cases in light of the axioms of probability theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent mathematical equations are developed and presented and illustrated by means of examples.展开更多
In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped i...In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that th展开更多
In this paper,a binary-extensible quality status encoding scheme,named IQSCT(IoT quality status code table),is proposed for the PCB-based product with available recovery options in remanufacturing.IQSCT is achieved by...In this paper,a binary-extensible quality status encoding scheme,named IQSCT(IoT quality status code table),is proposed for the PCB-based product with available recovery options in remanufacturing.IQSCT is achieved by code evolution based on binary logic,in which the product flow and the quality information flow are integrated,and three key features of PCB-based product(PCB-module association,assembly-disassembly logic,and disassembly risk)are involved in production costing.With IQSCT,the manufacturer can have better decisions to reduce remanufacturing cost and improve resource utilization,which is verified by a case study based on the real data from BOM cost and corresponding estimation of Apple iPhone 11 series.展开更多
This paper presents a single channel, low power 6-bit 410-MS/s asynchronous successive approximation register analog-to-digital converter (SAR ADC) for ultrawide bandwidth (UWB) communication, prototyped in a SMIC...This paper presents a single channel, low power 6-bit 410-MS/s asynchronous successive approximation register analog-to-digital converter (SAR ADC) for ultrawide bandwidth (UWB) communication, prototyped in a SMIC 65-nm process. Based on the 3 bits/stage structure, resistive DAC, and the modified asynchronous successive approximation register control logic, the proposed ADC attains a peak spurious-free dynamic range (SFDR) of 41.95 dB, and a signal-to-noise and distortion ratio (SNDR) of 28.52 dB for 370 MS/s. At the sampling rate of 410 MS/s, this design still performs well with a 40.71-dB SFDR and 30.02-dB SNDR. A four-input dynamic comparator is designed so as to decrease the power consumption. The measurement results indicate that this SAR ADC consumes 2.03 mW, corresponding to a figure of merit of 189.17 fJ/step at 410 MS/s.展开更多
文摘The Ecological Environment Code,as a significant legal instrument for the evolution of ecological civilization,possesses both substantive and formal dimensions.First,it aims to serve the national ecological civilization strategy.Second,it elucidates potential pathways for legal interpretation,development of legal rules,and promotion of judicial governance,restraining arbitrary behavior and disorder while facilitating systemic cohesion.The compilation of the Ecological Environment Code unfolds through the main threads of substantive and formal logic.By prioritizing conservation,protection,and restoring the natural environment,resource management,pollution prevention,and ecological protection are coordinated,integrating legislation on ecological protection with management of natural resources and pollution prevention to achieve both"harm avoidance"and"beneficial trends."Employing the formal logical main thread of the structure of the relationship between power and rights,we present four types of norms:ex post facto remedy,hazard prevention,risk prevention,and independent value selection.
文摘Residue Number System (RNS) has proved shaping the Digital Signal Processing (DSP) units into highly parallel, faster and secured entities. The computational complexity of the multiplication process for a RNS based design can be reduced by indulging Logarithmic Number System (LNS). The combination of these unusual number systems forms Residue Logarithmic Number System (RLNS) that provides simple internal architectures. Till date RLNS based processing units are designed for binary logic based circuits. In order to reduce the number of input output signals in a system, the concept of Multiple Valued Logic (MVL) is introduced in literature. In that course of research, this paper uses Tri Valued Logic (TVL) in RLNS technique proposed, to further reduce the chip area and delay value. Thus in this research work three different concepts are proposed, it includes the design of multiplier for RLNS based application for number of bits 8, 16 and 32. Next is the utilization of TVL in the proposed multiplication structure for RLNS based system along with the error correction circuits for the ternary logarithmic and antilogarithmic conversion process. Finally the comparison of the two multiplication schemes with the existing research of multiplier design for RNS based system using booth encoding concepts. It can be found that the proposed technique using TVL saves on an average of about 63% of area occupied and 97% of delay value respectively than the existing technique.
文摘The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the problem is described as much as possible in the tradition and the spirit—and as much as possible by means of the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is analyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productivity, the Monty Hall problem is extended and generalized in parts 3 and 4 to related cases in light of the axioms of probability theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent mathematical equations are developed and presented and illustrated by means of examples.
文摘In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that th
基金the National Natural Science Foundation of China(Grant Nos.71871058 and 71531010).
文摘In this paper,a binary-extensible quality status encoding scheme,named IQSCT(IoT quality status code table),is proposed for the PCB-based product with available recovery options in remanufacturing.IQSCT is achieved by code evolution based on binary logic,in which the product flow and the quality information flow are integrated,and three key features of PCB-based product(PCB-module association,assembly-disassembly logic,and disassembly risk)are involved in production costing.With IQSCT,the manufacturer can have better decisions to reduce remanufacturing cost and improve resource utilization,which is verified by a case study based on the real data from BOM cost and corresponding estimation of Apple iPhone 11 series.
基金Project supported by the National Science Foundation for Young Scientists of China(No.61306029)the National High Technology Research and Development Program of China(No.2013AA014103)
文摘This paper presents a single channel, low power 6-bit 410-MS/s asynchronous successive approximation register analog-to-digital converter (SAR ADC) for ultrawide bandwidth (UWB) communication, prototyped in a SMIC 65-nm process. Based on the 3 bits/stage structure, resistive DAC, and the modified asynchronous successive approximation register control logic, the proposed ADC attains a peak spurious-free dynamic range (SFDR) of 41.95 dB, and a signal-to-noise and distortion ratio (SNDR) of 28.52 dB for 370 MS/s. At the sampling rate of 410 MS/s, this design still performs well with a 40.71-dB SFDR and 30.02-dB SNDR. A four-input dynamic comparator is designed so as to decrease the power consumption. The measurement results indicate that this SAR ADC consumes 2.03 mW, corresponding to a figure of merit of 189.17 fJ/step at 410 MS/s.