Considering both the effect of the nonisothermal nature of the interface as well as the effect of forced convection,an extended free dendritic growth model for binary alloys was proposed.Comparative analysis indicates...Considering both the effect of the nonisothermal nature of the interface as well as the effect of forced convection,an extended free dendritic growth model for binary alloys was proposed.Comparative analysis indicates that the effect of convection on solute diffusion is more remarkable compared with the ignorable effect of convection on thermal diffusion at low bath undercooling,due to the fact that solute diffusion coefficient is usually three orders of magnitude less than thermal diffusion coefficient.At high bath undercooling,the effect of convection on the dendritic growth is very slight.Furthermore,a satisfying agreement between the model predictions with the available experiment data for the Cu70Ni30 alloy was obtained,especially at low bath undercoolings,profiting from the higher values of interfacial migration velocity predicted by the present model with nonideal fluid case than that predicted by the one ignoring the effect of convection.展开更多
The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took pl...The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took place to form fine epoxy-rich globules dispersing in the PEK-C matrix, in which the epoxy-rich phase had the absolutely higher volume fraction. The phase structure and the interfacial properties were also studied by means of FTIR, DSC, and DMTA as well. An accompanying mechanical determination revealed that an improved toughness was achieved both in the blend casts and in the carbon fiber composites. A composite structural model was hence suggested.展开更多
A mechanical analysis is done to find the evolution of the interface profile between binary immiscible fluids induced by a three-dimensional orthogonal magnetic field gradient.In the experiments,the changes of the int...A mechanical analysis is done to find the evolution of the interface profile between binary immiscible fluids induced by a three-dimensional orthogonal magnetic field gradient.In the experiments,the changes of the interface profile between four groups of binary immiscible fluids are investigated under the same horizontal magnetic field gradients.The binary immiscible fluids are made of benzene and other liquids,like CuSO4,Fecl3,FeSO4 or Cucl2 aqueous solutions.In addition,the interface profile between the benzene and CuSO4 aqueous solution is examined under different horizontal magnetic field gradients.The experimental results are consistent with the theoretical analysis.This study explains the enhanced Moses effect from a mechanics standpoint.Furthermore,a new method for susceptibility measurement is proposed based on this enhanced Moses effect.展开更多
基金the financial supports from the National Natural Science Foundation of China(No.51671075)the Heilongjiang Postdoctoral Fund for Scientific Research Initiation(No.LBH-Q16118)the Fundamental Research Foundation for Universities of Heilongjiang Province,China(No.LGYC2018-JC004).
文摘Considering both the effect of the nonisothermal nature of the interface as well as the effect of forced convection,an extended free dendritic growth model for binary alloys was proposed.Comparative analysis indicates that the effect of convection on solute diffusion is more remarkable compared with the ignorable effect of convection on thermal diffusion at low bath undercooling,due to the fact that solute diffusion coefficient is usually three orders of magnitude less than thermal diffusion coefficient.At high bath undercooling,the effect of convection on the dendritic growth is very slight.Furthermore,a satisfying agreement between the model predictions with the available experiment data for the Cu70Ni30 alloy was obtained,especially at low bath undercoolings,profiting from the higher values of interfacial migration velocity predicted by the present model with nonideal fluid case than that predicted by the one ignoring the effect of convection.
文摘The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took place to form fine epoxy-rich globules dispersing in the PEK-C matrix, in which the epoxy-rich phase had the absolutely higher volume fraction. The phase structure and the interfacial properties were also studied by means of FTIR, DSC, and DMTA as well. An accompanying mechanical determination revealed that an improved toughness was achieved both in the blend casts and in the carbon fiber composites. A composite structural model was hence suggested.
基金supported by the National Innovation Experimental Project for Undergraduate (Grant No. 070109)the Fundamental Research Fands for the central Universities (Grant No. 090209001)+1 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-06-0289)the Programme of Introducing Talents of Discipline to Universities (GrantNo. B07015)
文摘A mechanical analysis is done to find the evolution of the interface profile between binary immiscible fluids induced by a three-dimensional orthogonal magnetic field gradient.In the experiments,the changes of the interface profile between four groups of binary immiscible fluids are investigated under the same horizontal magnetic field gradients.The binary immiscible fluids are made of benzene and other liquids,like CuSO4,Fecl3,FeSO4 or Cucl2 aqueous solutions.In addition,the interface profile between the benzene and CuSO4 aqueous solution is examined under different horizontal magnetic field gradients.The experimental results are consistent with the theoretical analysis.This study explains the enhanced Moses effect from a mechanics standpoint.Furthermore,a new method for susceptibility measurement is proposed based on this enhanced Moses effect.