As usual, denote by KWr[a,b] the Sobolev class consisting of every function whose (r-1)th derivative is absolutely continuous on the interval [a,b] and rth derivative is bounded by K a.e. In [a,b]. For a function f ∈...As usual, denote by KWr[a,b] the Sobolev class consisting of every function whose (r-1)th derivative is absolutely continuous on the interval [a,b] and rth derivative is bounded by K a.e. In [a,b]. For a function f ∈ KWr[a,b], its values and derivatives up to r-1 order at a set of nodes x are known. These values are said to be the given Hermite information.This work reports the results on the best quadrature based on the given Hermite information for the class KWr[a,b]. Existence and concrete construction issue of the best quadrature are settled down by a perfect spline interpolation. It turns out that the best quadrature depends on a system of algebraic equations satisfied by a set of free nodes of the interpolation perfect spline. From our another new result, it is shown that the system can be converted in a closed form to two single-variable polynomial equations, each being of degree approximately r/2. As a by-product,the best interpolation formula for the class KWr[a,b] is also obtained.展开更多
The best quadrature formula has been found in the following sense: for a function whose norm of the second derivative is bounded by a given constant and the best quadrature formula for the approximate evaluation of in...The best quadrature formula has been found in the following sense: for a function whose norm of the second derivative is bounded by a given constant and the best quadrature formula for the approximate evaluation of integration of that function can minimize the worst possible error if the values of the function and its derivative at certain nodes are known.The best interpolation formula used to get the quadrature formula above is also found.Moreover,we compare the best quadrature formula with the open compound corrected trapezoidal formula by theoretical analysis and stochastic experiments.展开更多
In this paper, both low order and high order extensions of the Iyengar type inequality are obtained. Such extensions are the best possible in the same sense as that of the Iyengar inequality. hzrthermore, the Chebyshe...In this paper, both low order and high order extensions of the Iyengar type inequality are obtained. Such extensions are the best possible in the same sense as that of the Iyengar inequality. hzrthermore, the Chebyshev central algorithms of integrals for some function classes and some related problems are also considered and investigated.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10471128).
文摘As usual, denote by KWr[a,b] the Sobolev class consisting of every function whose (r-1)th derivative is absolutely continuous on the interval [a,b] and rth derivative is bounded by K a.e. In [a,b]. For a function f ∈ KWr[a,b], its values and derivatives up to r-1 order at a set of nodes x are known. These values are said to be the given Hermite information.This work reports the results on the best quadrature based on the given Hermite information for the class KWr[a,b]. Existence and concrete construction issue of the best quadrature are settled down by a perfect spline interpolation. It turns out that the best quadrature depends on a system of algebraic equations satisfied by a set of free nodes of the interpolation perfect spline. From our another new result, it is shown that the system can be converted in a closed form to two single-variable polynomial equations, each being of degree approximately r/2. As a by-product,the best interpolation formula for the class KWr[a,b] is also obtained.
基金supported by the Special Funds for Major State Basic Research Projects(Grant No.G19990328)the National and Zhejiang Provincial Natural Science Foundation of China(Grant No.10471128 and Grant No.101027).
文摘The best quadrature formula has been found in the following sense: for a function whose norm of the second derivative is bounded by a given constant and the best quadrature formula for the approximate evaluation of integration of that function can minimize the worst possible error if the values of the function and its derivative at certain nodes are known.The best interpolation formula used to get the quadrature formula above is also found.Moreover,we compare the best quadrature formula with the open compound corrected trapezoidal formula by theoretical analysis and stochastic experiments.
基金the Special Funds for Major State Basic Research Projects (Grant No.G19990328) National Science Foundation of China (Grant No.10471128)
文摘In this paper, both low order and high order extensions of the Iyengar type inequality are obtained. Such extensions are the best possible in the same sense as that of the Iyengar inequality. hzrthermore, the Chebyshev central algorithms of integrals for some function classes and some related problems are also considered and investigated.