期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The best quadrature based on given Hermite information for the Sobolev class KW^r[a,b] 被引量:3
1
作者 WANG Xinghua & YANG Shijun Department of Mathematics, Zhejiang University, Hangzhou 310028, China Department of Mathematics, Hangzhou Normal College, Hangzhou 310036, China 《Science China Mathematics》 SCIE 2006年第8期1146-1152,共7页
As usual, denote by KWr[a,b] the Sobolev class consisting of every function whose (r-1)th derivative is absolutely continuous on the interval [a,b] and rth derivative is bounded by K a.e. In [a,b]. For a function f ∈... As usual, denote by KWr[a,b] the Sobolev class consisting of every function whose (r-1)th derivative is absolutely continuous on the interval [a,b] and rth derivative is bounded by K a.e. In [a,b]. For a function f ∈ KWr[a,b], its values and derivatives up to r-1 order at a set of nodes x are known. These values are said to be the given Hermite information.This work reports the results on the best quadrature based on the given Hermite information for the class KWr[a,b]. Existence and concrete construction issue of the best quadrature are settled down by a perfect spline interpolation. It turns out that the best quadrature depends on a system of algebraic equations satisfied by a set of free nodes of the interpolation perfect spline. From our another new result, it is shown that the system can be converted in a closed form to two single-variable polynomial equations, each being of degree approximately r/2. As a by-product,the best interpolation formula for the class KWr[a,b] is also obtained. 展开更多
关键词 SOBOLEV class HERMITE information PERFECT spline optimal recovery best quadrature.
原文传递
Sobolev类带权函数的基于给定信息的最佳求积公式 被引量:1
2
作者 谢聪聪 《高校应用数学学报(A辑)》 CSCD 北大核心 2006年第2期214-222,共9页
给出了r阶Sobo lev类KWr[a,b]带权函数的基于给定信息的最佳求积公式和它的误差估计式.这里的给定信息是指:已知函数在给定区间若干点上的函数值和直到r-1阶导数值.对r≤2,得到了最佳求积公式和误差估计式的显式结果.另外还给出了类KW2[... 给出了r阶Sobo lev类KWr[a,b]带权函数的基于给定信息的最佳求积公式和它的误差估计式.这里的给定信息是指:已知函数在给定区间若干点上的函数值和直到r-1阶导数值.对r≤2,得到了最佳求积公式和误差估计式的显式结果.另外还给出了类KW2[a,b]中在节点的导数值为零的函数所组成的子类的相应的最佳求积公式. 展开更多
关键词 SOBOLEV类 最佳求积公式 Hermite信息 Lagrange信息
下载PDF
The best quadrature formula based on Hermite information for the class KW^(2)[a,b] 被引量:4
3
作者 WANG Xinghua MI Xiangjiang 《Science China Mathematics》 SCIE 2005年第1期79-87,共9页
The best quadrature formula has been found in the following sense: for a function whose norm of the second derivative is bounded by a given constant and the best quadrature formula for the approximate evaluation of in... The best quadrature formula has been found in the following sense: for a function whose norm of the second derivative is bounded by a given constant and the best quadrature formula for the approximate evaluation of integration of that function can minimize the worst possible error if the values of the function and its derivative at certain nodes are known.The best interpolation formula used to get the quadrature formula above is also found.Moreover,we compare the best quadrature formula with the open compound corrected trapezoidal formula by theoretical analysis and stochastic experiments. 展开更多
关键词 CLASS of second DIFFERENTIABLE functions Hermite information best quadrature formula best interpolation method stochastic experiment open compound corrected trapezoidal formula Iyengar-type inequalities.
原文传递
The Iyengar Type Inequalities with Exact Estimations and the Chebyshev Central Algorithms of Integrals 被引量:4
4
作者 Xing Hua WANG Shi Jun YANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第6期1361-1376,共16页
In this paper, both low order and high order extensions of the Iyengar type inequality are obtained. Such extensions are the best possible in the same sense as that of the Iyengar inequality. hzrthermore, the Chebyshe... In this paper, both low order and high order extensions of the Iyengar type inequality are obtained. Such extensions are the best possible in the same sense as that of the Iyengar inequality. hzrthermore, the Chebyshev central algorithms of integrals for some function classes and some related problems are also considered and investigated. 展开更多
关键词 Iyengar inequality Chebyshev center best quadrature formula best interpolation Nikol-skii type estimations
原文传递
三种不同意义下的最佳求积公式之间的关系 被引量:2
5
作者 崔峰 谢聪聪 《高校应用数学学报(A辑)》 CSCD 北大核心 2006年第3期339-348,共10页
详细讨论了函数类KWr[a,b]上Sard和N iko lsk ii意义下以及基于给定信息的最佳求积公式三者之间的关系,并且提供了一种由基于给定信息的最佳求积公式得到其它两种求积公式的方法.
关键词 最佳求积公式 最优求积公式 Hermite信息 SOBOLEV类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部