A 2-D non-uniform sediment mat hmatical model in the boundary-fitting orthogonal coordinate system was develop ed in this paper. The governing equations, the numerical scheme, the boundary con ditions, the movable bou...A 2-D non-uniform sediment mat hmatical model in the boundary-fitting orthogonal coordinate system was develop ed in this paper. The governing equations, the numerical scheme, the boundary con ditions, the movable boundary technique and the numerical solutions were present ed. The model was verified by the data of the reach 25km upstream the Jialingjia ng estuary and the 44km long main stream of the Chongqing reach of the Yangtze r iver. The calculated results show that, the water elevation, the velocity distri bution and the river bed deformation are in agreement with the measured data.展开更多
Due to vegetation drag and vegetation-generated turbulence,bedload transport in vegetated channels is more complicated than that in nonvegetated channels.It is challenging to obtain accurate predictions of bedload tra...Due to vegetation drag and vegetation-generated turbulence,bedload transport in vegetated channels is more complicated than that in nonvegetated channels.It is challenging to obtain accurate predictions of bedload transport in vegetated channels.Previous studies generally used rigid circular cylinders to simulate vegetation,and the impact of plant morphology on bedload transport was typically ignored;these methods deviate from natural scenarios,resulting in prediction errors in transport rates of more than an order of magnitude.This study measured bedload transport rates inside P.australis,A.calamus and T.latifolia canopies and in arrays of rigid cylinders for comparison.The impact of plant morphology on bedload transport in vegetated channels was examined.Inside the canopies of natural morphology,the primary factor driving bedload transport is the near-bed turbulent kinetic energy(TKE),which consists of both bed-generated and vegetation-generated turbulence.A method was proposed to predict the near-bed TKE inside canopies with natural morphology.For the same solid volume fraction of plants,the transport rate inside canopies with a natural morphology is greater than or equal to that within an array of rigid cylinders,depending on the plant shape.This finding indicates that plant morphology has a significant impact on transport rates in vegetated regions and cannot be ignored,which is typical in practice.Four classic bedload transport equations(the Meyer-Peter-Müller,Einstein,Engelund and Dou equations),which are suitable for bare channels(no vegetation),were modified in terms of the near-bed TKE.The predicted near-bed TKE was inserted into these four equations to predict the transport rate in canopies with natural morphology.A comparison of the predictions indicated that the Meyer-Peter-Müller equation had the highest accuracy in predicting the transport rate in vegetated landscapes.展开更多
The incipient motion of bedload is due to the interaction between the flow and sediment.It is stochastically correlated with the flow structure,the sediment gradation and the arrangement of grains on the bed surface.T...The incipient motion of bedload is due to the interaction between the flow and sediment.It is stochastically correlated with the flow structure,the sediment gradation and the arrangement of grains on the bed surface.The random position of the sediment on bed can be represented by a hiding factor or an exposure degree.Based on the numerical simulation of the disturbed flow in the interstice of grains,the influence of the two-way exposure degree(the vertical exposure degree and the longitudinal exposure degree) on the coarse grain incipient motion was investigated in this work.Results show that the exposure degree varies with the position of the sediment on the bed,which influences the flow structure around the particle and the incipient motion.In this paper,the major research achievements on this phenomenon include:Firstly,a mathematical model is established for the rolling-pattern incipient motion of the coarse grain under a critical state of moment balance.The influence of the partial disturbed flow is considered.Secondly,the two-way relative-exposure-degree probability distribution functions are developed to reflect the influence of the disturbed flow and the random arrangement of sediments.Thirdly,a formula to calculate the incipient velocity is presented based on the above results,which considers the impact of the two-way exposure degree of sediment particles.展开更多
Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bed- forms on the sea ...Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bed- forms on the sea floor off the Dongfang coast and internal structures of a typical dune were interpreted to evaluate storm influences on individual dunes and the dune field. Results indicated that flow forcings and related bedload transport were both strengthened significantly due to Typhoon Ketsana. The measurements and modeling results, which mainly included three different stages, presented noticeable phasic variation. The three stages were dominated by tidal current (Period I), tidal current combined with wind-induced waves (Period II), and swells combined with tidal current and seaward flows (Period III). This phasic varia- tion could be a common trait of hydrodynamics due to typhoons moving westwardly to the south of Hainan Island and Beibu Gulf in South China Sea. Results indicated that the maximum bedioad transport rate for every burst in Period III was almost 100 times larger than that in Period I and was ten times larger than that in Period II. However, the short-term increase in bedload transport induced by storms like Ketsana did not change the long-term evolution of dune morphology. Evidence was given by the internal structures of a typical dune, which revealed renewed modification under subsequent moderate conditions after storm ero- sion. Instead, storms may influence at different scales and regional allocation of sand dunes in some large areas because changes of the sea floor in large scales can hardly be recovered. More surveys during and after storm passage are also needed to document the level of positive contribution to forward migration.展开更多
文摘A 2-D non-uniform sediment mat hmatical model in the boundary-fitting orthogonal coordinate system was develop ed in this paper. The governing equations, the numerical scheme, the boundary con ditions, the movable boundary technique and the numerical solutions were present ed. The model was verified by the data of the reach 25km upstream the Jialingjia ng estuary and the 44km long main stream of the Chongqing reach of the Yangtze r iver. The calculated results show that, the water elevation, the velocity distri bution and the river bed deformation are in agreement with the measured data.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0128200)the National Natural Science Foundation of China(Grant Nos.52379072,52022063)the Fundamental Research Project of China Yangtze Power Co.,Ltd.(Grant No.2423020045).
文摘Due to vegetation drag and vegetation-generated turbulence,bedload transport in vegetated channels is more complicated than that in nonvegetated channels.It is challenging to obtain accurate predictions of bedload transport in vegetated channels.Previous studies generally used rigid circular cylinders to simulate vegetation,and the impact of plant morphology on bedload transport was typically ignored;these methods deviate from natural scenarios,resulting in prediction errors in transport rates of more than an order of magnitude.This study measured bedload transport rates inside P.australis,A.calamus and T.latifolia canopies and in arrays of rigid cylinders for comparison.The impact of plant morphology on bedload transport in vegetated channels was examined.Inside the canopies of natural morphology,the primary factor driving bedload transport is the near-bed turbulent kinetic energy(TKE),which consists of both bed-generated and vegetation-generated turbulence.A method was proposed to predict the near-bed TKE inside canopies with natural morphology.For the same solid volume fraction of plants,the transport rate inside canopies with a natural morphology is greater than or equal to that within an array of rigid cylinders,depending on the plant shape.This finding indicates that plant morphology has a significant impact on transport rates in vegetated regions and cannot be ignored,which is typical in practice.Four classic bedload transport equations(the Meyer-Peter-Müller,Einstein,Engelund and Dou equations),which are suitable for bare channels(no vegetation),were modified in terms of the near-bed TKE.The predicted near-bed TKE was inserted into these four equations to predict the transport rate in canopies with natural morphology.A comparison of the predictions indicated that the Meyer-Peter-Müller equation had the highest accuracy in predicting the transport rate in vegetated landscapes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51279124,51021004,50979066)
文摘The incipient motion of bedload is due to the interaction between the flow and sediment.It is stochastically correlated with the flow structure,the sediment gradation and the arrangement of grains on the bed surface.The random position of the sediment on bed can be represented by a hiding factor or an exposure degree.Based on the numerical simulation of the disturbed flow in the interstice of grains,the influence of the two-way exposure degree(the vertical exposure degree and the longitudinal exposure degree) on the coarse grain incipient motion was investigated in this work.Results show that the exposure degree varies with the position of the sediment on the bed,which influences the flow structure around the particle and the incipient motion.In this paper,the major research achievements on this phenomenon include:Firstly,a mathematical model is established for the rolling-pattern incipient motion of the coarse grain under a critical state of moment balance.The influence of the partial disturbed flow is considered.Secondly,the two-way relative-exposure-degree probability distribution functions are developed to reflect the influence of the disturbed flow and the random arrangement of sediments.Thirdly,a formula to calculate the incipient velocity is presented based on the above results,which considers the impact of the two-way exposure degree of sediment particles.
基金A CAS(Chinese Academy of Sciences)and CNOOC(China National Offshore Oil Corporation)collaborative research project
文摘Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bed- forms on the sea floor off the Dongfang coast and internal structures of a typical dune were interpreted to evaluate storm influences on individual dunes and the dune field. Results indicated that flow forcings and related bedload transport were both strengthened significantly due to Typhoon Ketsana. The measurements and modeling results, which mainly included three different stages, presented noticeable phasic variation. The three stages were dominated by tidal current (Period I), tidal current combined with wind-induced waves (Period II), and swells combined with tidal current and seaward flows (Period III). This phasic varia- tion could be a common trait of hydrodynamics due to typhoons moving westwardly to the south of Hainan Island and Beibu Gulf in South China Sea. Results indicated that the maximum bedioad transport rate for every burst in Period III was almost 100 times larger than that in Period I and was ten times larger than that in Period II. However, the short-term increase in bedload transport induced by storms like Ketsana did not change the long-term evolution of dune morphology. Evidence was given by the internal structures of a typical dune, which revealed renewed modification under subsequent moderate conditions after storm ero- sion. Instead, storms may influence at different scales and regional allocation of sand dunes in some large areas because changes of the sea floor in large scales can hardly be recovered. More surveys during and after storm passage are also needed to document the level of positive contribution to forward migration.