提出一种可重构智能表面(Reconfigurable Intelligent Surface,RIS)辅助的毫米波无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)系统,构建了一种以多用户最小用户速率最大化为目标的资源分配优化方案。通过...提出一种可重构智能表面(Reconfigurable Intelligent Surface,RIS)辅助的毫米波无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)系统,构建了一种以多用户最小用户速率最大化为目标的资源分配优化方案。通过对RIS进行分模块设计,同时进行信息和能量的辅助传输,考虑基站的发射功率限制、所有能量接收设备最低能量需求限制和RIS不同模块的相移约束,建立联合发射波束设计、RIS模块分割比决策及相移设计的混合资源分配优化模型。通过交替优化算法、半正定松弛算法、高斯随机化算法以及黎曼流形优化算法来解决这一非凸的多变量耦合约束优化问题。仿真结果表明,与现有的资源分配方案相比,所提出的联合优化算法在信息传输和能量收集方面均可显著提高系统性能。展开更多
无线携能传输(simultaneous wireless information and power transfer,SWIPT)能够有效解决通信终端的能源受限问题,而智能反射面(intelligent reflecting surface,IRS)能够辅助增强SWIPT的效率。为了克服单个IRS覆盖范围有限的缺点,以...无线携能传输(simultaneous wireless information and power transfer,SWIPT)能够有效解决通信终端的能源受限问题,而智能反射面(intelligent reflecting surface,IRS)能够辅助增强SWIPT的效率。为了克服单个IRS覆盖范围有限的缺点,以及进一步提高SWIPT的时间和频谱资源利用率,考虑了一个双IRS辅助基于非正交多址接入技术(non-orthogonal multiple access,NOMA)的无线携能通信系统,其中发送端的波束成形矢量、每个IRS的相移以及接收端的功率分割系数将进行联合优化以最大化系统的最小用户速率。为解决上述有着高度耦合优化变量的非凸优化问题,提出一个基于半正定松弛技术(semidefinite relaxation,SDR)和连续凸逼近技术(successive convex approximation,SCA)的交替优化(alternative optimization,AO)算法来高效求解该问题。仿真结果表明,双IRS辅助的系统比传统的单IRS辅助的系统能够实现更高的最小速率,揭示了部署双IRS的优异性、所提算法的有效性以及联合优化IRS相移及功率分割系数在提升用户速率性能方面的重要性。展开更多
文摘提出一种可重构智能表面(Reconfigurable Intelligent Surface,RIS)辅助的毫米波无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)系统,构建了一种以多用户最小用户速率最大化为目标的资源分配优化方案。通过对RIS进行分模块设计,同时进行信息和能量的辅助传输,考虑基站的发射功率限制、所有能量接收设备最低能量需求限制和RIS不同模块的相移约束,建立联合发射波束设计、RIS模块分割比决策及相移设计的混合资源分配优化模型。通过交替优化算法、半正定松弛算法、高斯随机化算法以及黎曼流形优化算法来解决这一非凸的多变量耦合约束优化问题。仿真结果表明,与现有的资源分配方案相比,所提出的联合优化算法在信息传输和能量收集方面均可显著提高系统性能。
文摘无线携能传输(simultaneous wireless information and power transfer,SWIPT)能够有效解决通信终端的能源受限问题,而智能反射面(intelligent reflecting surface,IRS)能够辅助增强SWIPT的效率。为了克服单个IRS覆盖范围有限的缺点,以及进一步提高SWIPT的时间和频谱资源利用率,考虑了一个双IRS辅助基于非正交多址接入技术(non-orthogonal multiple access,NOMA)的无线携能通信系统,其中发送端的波束成形矢量、每个IRS的相移以及接收端的功率分割系数将进行联合优化以最大化系统的最小用户速率。为解决上述有着高度耦合优化变量的非凸优化问题,提出一个基于半正定松弛技术(semidefinite relaxation,SDR)和连续凸逼近技术(successive convex approximation,SCA)的交替优化(alternative optimization,AO)算法来高效求解该问题。仿真结果表明,双IRS辅助的系统比传统的单IRS辅助的系统能够实现更高的最小速率,揭示了部署双IRS的优异性、所提算法的有效性以及联合优化IRS相移及功率分割系数在提升用户速率性能方面的重要性。