We investigate the beam focusing technology of shear-vertical(SV) waves for a contact-type linear phased array to overcome the shortcomings of conventional wedge transducer arrays. The numerical simulation reveals the...We investigate the beam focusing technology of shear-vertical(SV) waves for a contact-type linear phased array to overcome the shortcomings of conventional wedge transducer arrays. The numerical simulation reveals the transient excitation and propagation characteristics of SV waves. It is found that the element size plays an important role in determining the transient radiation directivity of SV waves. The transient beam focusing characteristics of SV waves for various array parameters are deeply studied. It is particularly interesting to see that smaller element width will provide the focused beam of SV waves with higher quality, while larger element width may result in erratic fluctuation of focusing energy around the focal point. There exists a specific range of inter-element spacing for optimum focusing performance. Moreover, good beam focusing performance of SV waves can be achieved only at high steering angles.展开更多
We propose a novel scheme of optical confinement for atoms by using a concave grating reflector.The two-dimension grating structure with a concave surface shape exhibits strong focusing ability under radially polarize...We propose a novel scheme of optical confinement for atoms by using a concave grating reflector.The two-dimension grating structure with a concave surface shape exhibits strong focusing ability under radially polarized illumination.Especially,the light intensity at the focal point is about 100 times higher than that of the incident light.Such a focusing optical field reflected from the curved grating structure can provide a deep potential to trap cold atoms.We discuss the feasibility of the structure serving as an optical dipole trap.Our results are as follows.(i) Van der Waals attraction potential to the surface of the structure has a low effect on trapped atoms,(ⅱ) The maximum trapping potential is ~1.14 mK in the optical trap,which is high enough to trap cold ^87Rb atoms from a standard magneto-optical trap with a temperature of 120 μK,and the maximum photon scattering rate is lower than 1/s.(ⅲ) Such a microtrap array can also manipulate and control cold molecules,or microscopic particles.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774377 and 11574343)。
文摘We investigate the beam focusing technology of shear-vertical(SV) waves for a contact-type linear phased array to overcome the shortcomings of conventional wedge transducer arrays. The numerical simulation reveals the transient excitation and propagation characteristics of SV waves. It is found that the element size plays an important role in determining the transient radiation directivity of SV waves. The transient beam focusing characteristics of SV waves for various array parameters are deeply studied. It is particularly interesting to see that smaller element width will provide the focused beam of SV waves with higher quality, while larger element width may result in erratic fluctuation of focusing energy around the focal point. There exists a specific range of inter-element spacing for optimum focusing performance. Moreover, good beam focusing performance of SV waves can be achieved only at high steering angles.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374100,91536218,and 11274114)the Natural Science Foundation of Shanghai Municipality,China(Grant No.13ZR1412800)
文摘We propose a novel scheme of optical confinement for atoms by using a concave grating reflector.The two-dimension grating structure with a concave surface shape exhibits strong focusing ability under radially polarized illumination.Especially,the light intensity at the focal point is about 100 times higher than that of the incident light.Such a focusing optical field reflected from the curved grating structure can provide a deep potential to trap cold atoms.We discuss the feasibility of the structure serving as an optical dipole trap.Our results are as follows.(i) Van der Waals attraction potential to the surface of the structure has a low effect on trapped atoms,(ⅱ) The maximum trapping potential is ~1.14 mK in the optical trap,which is high enough to trap cold ^87Rb atoms from a standard magneto-optical trap with a temperature of 120 μK,and the maximum photon scattering rate is lower than 1/s.(ⅲ) Such a microtrap array can also manipulate and control cold molecules,or microscopic particles.