针对上海光源机器故障分析的需求,对原有储存环束流轨道联锁系统进行升级,实现对储存环束流位置测量系统中140台束流位置监测器(Beam Position Monitor,BPM)电子学输出的联锁信号进行标记,同时锁存丟束过程中所有BPM电子学中的逐圈轨道...针对上海光源机器故障分析的需求,对原有储存环束流轨道联锁系统进行升级,实现对储存环束流位置测量系统中140台束流位置监测器(Beam Position Monitor,BPM)电子学输出的联锁信号进行标记,同时锁存丟束过程中所有BPM电子学中的逐圈轨道数据。联锁信号的处理与锁存触发信号的输出在FPGA(Field Programmable Gate Array)内完成。该系统集成至储存环的物理实验与工业控制系统(Experimental Physics and Industrial Control System,EPICS)控制系统之中。束流检测实验表明,该系统能够准确区分不同BPM电子学输出的联锁信号,同时锁存丟束时逐圈轨道数据,并通过该系统观测到了储存环束流丢失过程中的逐圈轨道变化。展开更多
We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the...We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the diagnostic system, describes the setup, and shows the results. A bending beam line was designed using an existing magnetic analyzer with a 300 mm-bending radius and a 60° bending angle at hard-edge approximation. Calculations show that the magnitude of the beam energy is about 18 MeV, and the energy spread is within 2%. Our results agree well with the initial estimates deduced from the diode voltage approach.展开更多
文摘针对上海光源机器故障分析的需求,对原有储存环束流轨道联锁系统进行升级,实现对储存环束流位置测量系统中140台束流位置监测器(Beam Position Monitor,BPM)电子学输出的联锁信号进行标记,同时锁存丟束过程中所有BPM电子学中的逐圈轨道数据。联锁信号的处理与锁存触发信号的输出在FPGA(Field Programmable Gate Array)内完成。该系统集成至储存环的物理实验与工业控制系统(Experimental Physics and Industrial Control System,EPICS)控制系统之中。束流检测实验表明,该系统能够准确区分不同BPM电子学输出的联锁信号,同时锁存丟束时逐圈轨道数据,并通过该系统观测到了储存环束流丢失过程中的逐圈轨道变化。
基金Supported by National Natural Science Foundation of China(11375162,10675104,51077119)
文摘We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the diagnostic system, describes the setup, and shows the results. A bending beam line was designed using an existing magnetic analyzer with a 300 mm-bending radius and a 60° bending angle at hard-edge approximation. Calculations show that the magnitude of the beam energy is about 18 MeV, and the energy spread is within 2%. Our results agree well with the initial estimates deduced from the diode voltage approach.