For non-destructive optical characterization, laser beam induced current(LBIC) microscopy has been developed into as a quantitative tool to examine individual photodiodes within a large pixel array. Two-dimensional LB...For non-destructive optical characterization, laser beam induced current(LBIC) microscopy has been developed into as a quantitative tool to examine individual photodiodes within a large pixel array. Two-dimensional LBIC microscopy, also generally called photocurrent mapping(PC mapping), can provide spatially resolved information about local electrical properties and p-n junction formation in photovoltaic infrared(including visible light) photodetectors from which it is possible to extract material and device parameters such as junction area, junction depth, diffusion length, leakage current position and minority carrier diffusion length etc. This paper presents a comprehensive review of research background, operating principle, fundamental issues, and applications of LBIC or PC mapping.展开更多
Time-modulated array(TMA)antennas,introduce the dimension of time into antenna design to control the radiation patterns and frequency spectral characteristics,thus improve the reconfigurability of array antennas and p...Time-modulated array(TMA)antennas,introduce the dimension of time into antenna design to control the radiation patterns and frequency spectral characteristics,thus improve the reconfigurability of array antennas and provide multiple functional-ities.They have great application potential in military and civilian fields,such as precision guidance and mobile communication,and are currently a hot spot of academic research.This article provides a review on the fundamentals and applications of TMAs.First,the basic theory and mathematical formulations of TMAs are introduced.Second,the most important applications of TMAs,namely time-modulated phased arrays(TMPA),are discussed from the perspectives of harmonic suppression and harmonic utiliza-tion,which are used for single-beam and multibeam radiation.Then,we survey the combination of TMA with various types of novel antenna arrays,such as single-channel digital beamforming(DBF)arrays,frequency diverse arrays(FDAs),and retrodirective arrays,to create new hardware implementation methods and enhance their performance.Next,recent advances in dedicated integrated chips for TMA,which have played a significant role in driving the progress of TMAs from academic research to practical applications,are presented.Finally,the challenges and prospects for TMAs are discussed,including new research directions and emerging applica-tion scenarios.展开更多
天线是射电望远镜系统关键组成部分,其性能对于望远镜的观测能力有着决定性的影响.数十年来,射电望远镜天线技术不断发展,在有效接收面积、观测带宽和视场等各个方面取得了巨大进步,并推动了新的科学发现.文章对射电天文领域出现的多项...天线是射电望远镜系统关键组成部分,其性能对于望远镜的观测能力有着决定性的影响.数十年来,射电望远镜天线技术不断发展,在有效接收面积、观测带宽和视场等各个方面取得了巨大进步,并推动了新的科学发现.文章对射电天文领域出现的多项先进的天线技术,包括整体成型面板、相控阵馈源、超宽带单波束馈源和孔径阵列等进行了详细的介绍.作为国际上正在积极推进的平方公里阵(Square Kilometre Array,SKA)的关键技术,这些技术已经取得了重要突破,其他领域的天线也可有所借鉴.展开更多
基金supported by the State Key Program for Basic Research of China(Grant No.2014CB921600)the National Natural Science Foundation of China(Grant Nos.11322441 and 11274331)the Fund of Shanghai Science and Technology Foundation(Grant No.14JC1406400)
文摘For non-destructive optical characterization, laser beam induced current(LBIC) microscopy has been developed into as a quantitative tool to examine individual photodiodes within a large pixel array. Two-dimensional LBIC microscopy, also generally called photocurrent mapping(PC mapping), can provide spatially resolved information about local electrical properties and p-n junction formation in photovoltaic infrared(including visible light) photodetectors from which it is possible to extract material and device parameters such as junction area, junction depth, diffusion length, leakage current position and minority carrier diffusion length etc. This paper presents a comprehensive review of research background, operating principle, fundamental issues, and applications of LBIC or PC mapping.
基金supported by the National Natural Science Foundation of China(Grant Nos.62101258,62071235 and 62271260)the Jiangsu Province Science&Technology Department(Grant No.BE2021017).
文摘Time-modulated array(TMA)antennas,introduce the dimension of time into antenna design to control the radiation patterns and frequency spectral characteristics,thus improve the reconfigurability of array antennas and provide multiple functional-ities.They have great application potential in military and civilian fields,such as precision guidance and mobile communication,and are currently a hot spot of academic research.This article provides a review on the fundamentals and applications of TMAs.First,the basic theory and mathematical formulations of TMAs are introduced.Second,the most important applications of TMAs,namely time-modulated phased arrays(TMPA),are discussed from the perspectives of harmonic suppression and harmonic utiliza-tion,which are used for single-beam and multibeam radiation.Then,we survey the combination of TMA with various types of novel antenna arrays,such as single-channel digital beamforming(DBF)arrays,frequency diverse arrays(FDAs),and retrodirective arrays,to create new hardware implementation methods and enhance their performance.Next,recent advances in dedicated integrated chips for TMA,which have played a significant role in driving the progress of TMAs from academic research to practical applications,are presented.Finally,the challenges and prospects for TMAs are discussed,including new research directions and emerging applica-tion scenarios.
文摘天线是射电望远镜系统关键组成部分,其性能对于望远镜的观测能力有着决定性的影响.数十年来,射电望远镜天线技术不断发展,在有效接收面积、观测带宽和视场等各个方面取得了巨大进步,并推动了新的科学发现.文章对射电天文领域出现的多项先进的天线技术,包括整体成型面板、相控阵馈源、超宽带单波束馈源和孔径阵列等进行了详细的介绍.作为国际上正在积极推进的平方公里阵(Square Kilometre Array,SKA)的关键技术,这些技术已经取得了重要突破,其他领域的天线也可有所借鉴.