In this paper, an energy efficient bandwidth allocation scheme is proposed for wireless communication systems. An optimal bandwidth expansion(OBE) scheme is proposed to assign the available system bandwidth for user...In this paper, an energy efficient bandwidth allocation scheme is proposed for wireless communication systems. An optimal bandwidth expansion(OBE) scheme is proposed to assign the available system bandwidth for users. When the system bandwidth does not reach the full load, the remaining bandwidth can be energy-efficiently assigned to the other users. Simulation results show that the energy efficiency of the proposed OBE scheme outperforms the traditional same bandwidth expansion(SBE) scheme. Thus, the proposed OBE can effectively assign the system bandwidth and improve energy efficiency.展开更多
The request/transmit based upstream bandwidth resource allocation policy of DOCSIS introduces a trouble to the quality of the data service provided in the I-IFC networks. In this paper, the mechanism of the upstream d...The request/transmit based upstream bandwidth resource allocation policy of DOCSIS introduces a trouble to the quality of the data service provided in the I-IFC networks. In this paper, the mechanism of the upstream data transrmitting and the process of data service transmitting in the HFC networks are described in detail, and the perfor- mance of the data service in HFC networks is analyzed. An advanced upstream bandwidth resource allocation policy is proposed to improve the quality of the data service in the HFC networks.展开更多
The bandwidth resources allocation strategies of the existing Internet of Vehicles(IoV) are mainly base on the communication architecture of the traditional 802.11 x in the wireless local area network(WLAN). The tradi...The bandwidth resources allocation strategies of the existing Internet of Vehicles(IoV) are mainly base on the communication architecture of the traditional 802.11 x in the wireless local area network(WLAN). The traditional communication architecture of IoV will easily cause significant delay and low Packet Delivery Ratio(PDR) for disseminating critical security beacons under the condition of high-speed movement, distance-varying communication, and mixed traffic. This paper proposes a novel bandwidth-link resources cooperative allocation strategy to achieve better communication performance under the road conditions of intelligent transportation systems(ITS). Firstly, in traffic scenarios, based on the characteristic to predict the relative position of the mobile transceivers, a strategy is developed to cooperate on the mobile cellular network and the Dedicated Short-Range Communications(DSRC). Secondly, by adopting the general network simulator NS3, the dedicated mobile channel models that are suitable for the data interaction of ITS, is applied to confirm the feasibility and reliability of the strategy. Finally, by the simulation, comparison, and analysis of some critical performance parame-ters, we conclude that the novel strategy does not only reduce the system delay but also improve the other communication performance indicators, such as the PDR and communication capacity.展开更多
基金supported by the NSC under Grant No.101-2221-E-324-024
文摘In this paper, an energy efficient bandwidth allocation scheme is proposed for wireless communication systems. An optimal bandwidth expansion(OBE) scheme is proposed to assign the available system bandwidth for users. When the system bandwidth does not reach the full load, the remaining bandwidth can be energy-efficiently assigned to the other users. Simulation results show that the energy efficiency of the proposed OBE scheme outperforms the traditional same bandwidth expansion(SBE) scheme. Thus, the proposed OBE can effectively assign the system bandwidth and improve energy efficiency.
文摘The request/transmit based upstream bandwidth resource allocation policy of DOCSIS introduces a trouble to the quality of the data service provided in the I-IFC networks. In this paper, the mechanism of the upstream data transrmitting and the process of data service transmitting in the HFC networks are described in detail, and the perfor- mance of the data service in HFC networks is analyzed. An advanced upstream bandwidth resource allocation policy is proposed to improve the quality of the data service in the HFC networks.
基金supported in part by the National Natural Science Foundation of China (No.61573171)the Major Information Projects of State Ministry of Transportation (No.2013-364-836-900)
文摘The bandwidth resources allocation strategies of the existing Internet of Vehicles(IoV) are mainly base on the communication architecture of the traditional 802.11 x in the wireless local area network(WLAN). The traditional communication architecture of IoV will easily cause significant delay and low Packet Delivery Ratio(PDR) for disseminating critical security beacons under the condition of high-speed movement, distance-varying communication, and mixed traffic. This paper proposes a novel bandwidth-link resources cooperative allocation strategy to achieve better communication performance under the road conditions of intelligent transportation systems(ITS). Firstly, in traffic scenarios, based on the characteristic to predict the relative position of the mobile transceivers, a strategy is developed to cooperate on the mobile cellular network and the Dedicated Short-Range Communications(DSRC). Secondly, by adopting the general network simulator NS3, the dedicated mobile channel models that are suitable for the data interaction of ITS, is applied to confirm the feasibility and reliability of the strategy. Finally, by the simulation, comparison, and analysis of some critical performance parame-ters, we conclude that the novel strategy does not only reduce the system delay but also improve the other communication performance indicators, such as the PDR and communication capacity.