设计了一种用于S波段、工作带宽10%的相对论速调管放大器结构。该宽带管采用多间隙输入腔、两个中间腔和重叠模双间隙输出腔来拓展相对论速调管放大器(RKA)群聚段和输出段的带宽,模拟得到基波调制深度大于80%时,RKA群聚段和输出段的带...设计了一种用于S波段、工作带宽10%的相对论速调管放大器结构。该宽带管采用多间隙输入腔、两个中间腔和重叠模双间隙输出腔来拓展相对论速调管放大器(RKA)群聚段和输出段的带宽,模拟得到基波调制深度大于80%时,RKA群聚段和输出段的带宽分别为11%和15%。整管模拟时,通过调节注入微波频率和功率,得到最大功率1.58 GW、3 d B相对工作带宽10%、带内微波功率不小于1 GW的输出微波。展开更多
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
文摘设计了一种用于S波段、工作带宽10%的相对论速调管放大器结构。该宽带管采用多间隙输入腔、两个中间腔和重叠模双间隙输出腔来拓展相对论速调管放大器(RKA)群聚段和输出段的带宽,模拟得到基波调制深度大于80%时,RKA群聚段和输出段的带宽分别为11%和15%。整管模拟时,通过调节注入微波频率和功率,得到最大功率1.58 GW、3 d B相对工作带宽10%、带内微波功率不小于1 GW的输出微波。
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
文摘利用加载集总电阻的方式设计出一种极化稳定且宽入射角的宽带超材料吸波体(wide-band metamaterial absorber,WBMA),在平面波垂直入射时,其吸波半波功率带宽达12.7 GHz,吸波率大于90%的带宽达10.42 GHz,峰值吸波率达99.9%.将其与微带天线共基板共接地板的方式加载,制备出WBMA微带天线,实现了天线宽频域内雷达散射截面(radar cross section,RCS)大幅缩减.仿真与实测结果表明:将WBMA加载于微带天线后,天线的前向增益提高了0.53 d B,整体辐射特性基本保持不变;在不同极化波下,天线的工作频带带内和带外等宽频域(6.95—17.91 GHz)内的单站RCS缩减大于3 d B以上,最大缩减值达21.2 d B;在天线的中心频点8 GHz处±48°的宽角域内,双站RCS缩减效果明显,很好地实现了天线的宽频域大角度的隐身设计.