The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically ...The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases, The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.展开更多
Concave surfaces focus sound while convex surfaces disperse sound. It is therefore interesting to know if it is possible to make use of these two opposite characteristics to enhance the band gap performance of periodi...Concave surfaces focus sound while convex surfaces disperse sound. It is therefore interesting to know if it is possible to make use of these two opposite characteristics to enhance the band gap performance of periodic arrays of solid cylinders in air. In this paper, the band gap characteristics of a 2-D square array of semi-hollow circular cylinders embedded in air are investigated, both experimentally and theoretically. In comparison with the types of inclusion studied by previous researchers, a semi-hollow circular cylinder is unique in the sense that it has concave inner surfaces and convex outer surfaces. The finite difference time domain (FDTD) method is employed to study the propagation behavior of sound across the new phononic crystal of finite extent, and the influences of sample size and inclusion orientation on band gap characteristics are quantified in order to obtain the maximum band gap. For reference, the band gap behaviors of solid circular cylinder/air and hollow circular cylinder/air systems are considered and compared with those of semi-hollow circular cylinder/air systems. In addition to semi-hollow circular cylinders, other inclusion topologies such as semi-hollow triangular and square cylinders are also investigated. To validate the theoretical predictions, experimental measurements on square arrays of hollow Al cylinders in air and semi-hollow Al cylinders in air are carried out. The results demonstrate that the semi-hollow circular cylinder/air system has the best overall band gap performance.展开更多
Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. ...Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches.展开更多
We present a detailed theoretical study of the behavior of mono-vacancy and B-doped defects in carbon heterojunction nanodevices. We have introduced a complete set of formation energy and surface reactivity calculatio...We present a detailed theoretical study of the behavior of mono-vacancy and B-doped defects in carbon heterojunction nanodevices. We have introduced a complete set of formation energy and surface reactivity calculations, considering a range of different diameters and chiralities of combined carbon nanotubes. We have investigated three distinct combinations of carbon heterojunctions using density functional theory (DFT) and applying B3LYP/3-21g: armchair-armchair herteojunctions, zigzag-zigzag heterojunctions, and zigzag-armchair heterojunctions. We have shown for first time a detailed study of formation energy of mono-vacancy and B-doped defects of carbon heterojunction nanodevices. Our calculations show that the highest surface reactivity is found for the B-doped zigzag-armchair heterojunctions and it is easier to remove the carbon atom from the network of heterojunction armchair-armchair CNTs than the heterojunction zigzag-armchair and zigzag-zigzag CNTs.展开更多
Piezoelectric shunting arrays are employed to control the wave propagation in flexible beams. Contrary to conven- tional symmetric configuration, a substrate beam with anti-symmetric shunting arrays is investigated by...Piezoelectric shunting arrays are employed to control the wave propagation in flexible beams. Contrary to conven- tional symmetric configuration, a substrate beam with anti-symmetric shunting arrays is investigated by adapted transfer matrix method. Compared with symmetric scheme, the anti-symmetric one demonstrates some distinctive characteristics. Primarily, the longitudinal and fiexural waves are coupled, so they are correlated and must be considered simultaneously. Moreover, the attenuation of flexural wave is much stronger in anti-symmetric scenario, while the longitudinal wave demon- strates the converse side. As a result, the anti-symmetric scheme can be utilized to improve the vibration isolation capability of shunting arrays. Finally, the theoretical analyses are validated by finite element simulations.展开更多
Density functional theory calculations within the G03W package, with B3LYP exchange functional and applying basis set 6 - 31 G (d,p) are performed. The surface reactivity and electronic properties of endo-hydrogenatio...Density functional theory calculations within the G03W package, with B3LYP exchange functional and applying basis set 6 - 31 G (d,p) are performed. The surface reactivity and electronic properties of endo-hydrogenation and exo-hydrogenation fullerene cages are studied. It is found that the surface reactivity of mono-hydrogenation fullerene cages is larger than the surface reactivity of un-hydrogenation fullerene cages and the later is larger than the fully hydrogenation fullerene cages. In addition, the calculations show that the endo-hydrogenation fullerene cages possess the same band gaps as the un-hydrogenation fullerene cages, however, the exo-hydrogenation is reduced the band gaps of the un-hydrogenated fullerene cages form ~7 eV to ~5 eV.展开更多
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 51307) and the National Natural Science Foundation of China (Grant No 50575222).
文摘The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases, The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.
基金Supported by the National Basic Research Program of China ("973" Project) (Grant Nos.2006CB601202,2006CB601204)the National Natural Science Foundation of China (Grant Nos.50676075,10572111,10632060)+1 种基金the National 111 Project of China (Grant No.B06024)the National High Technology Research and Development Program of China ("863" Project) (Grant No.2006AA03Z519)
文摘Concave surfaces focus sound while convex surfaces disperse sound. It is therefore interesting to know if it is possible to make use of these two opposite characteristics to enhance the band gap performance of periodic arrays of solid cylinders in air. In this paper, the band gap characteristics of a 2-D square array of semi-hollow circular cylinders embedded in air are investigated, both experimentally and theoretically. In comparison with the types of inclusion studied by previous researchers, a semi-hollow circular cylinder is unique in the sense that it has concave inner surfaces and convex outer surfaces. The finite difference time domain (FDTD) method is employed to study the propagation behavior of sound across the new phononic crystal of finite extent, and the influences of sample size and inclusion orientation on band gap characteristics are quantified in order to obtain the maximum band gap. For reference, the band gap behaviors of solid circular cylinder/air and hollow circular cylinder/air systems are considered and compared with those of semi-hollow circular cylinder/air systems. In addition to semi-hollow circular cylinders, other inclusion topologies such as semi-hollow triangular and square cylinders are also investigated. To validate the theoretical predictions, experimental measurements on square arrays of hollow Al cylinders in air and semi-hollow Al cylinders in air are carried out. The results demonstrate that the semi-hollow circular cylinder/air system has the best overall band gap performance.
基金the National Natural Science Foundation of China(Grant Nos.50905182 and 51175501)
文摘Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches.
文摘We present a detailed theoretical study of the behavior of mono-vacancy and B-doped defects in carbon heterojunction nanodevices. We have introduced a complete set of formation energy and surface reactivity calculations, considering a range of different diameters and chiralities of combined carbon nanotubes. We have investigated three distinct combinations of carbon heterojunctions using density functional theory (DFT) and applying B3LYP/3-21g: armchair-armchair herteojunctions, zigzag-zigzag heterojunctions, and zigzag-armchair heterojunctions. We have shown for first time a detailed study of formation energy of mono-vacancy and B-doped defects of carbon heterojunction nanodevices. Our calculations show that the highest surface reactivity is found for the B-doped zigzag-armchair heterojunctions and it is easier to remove the carbon atom from the network of heterojunction armchair-armchair CNTs than the heterojunction zigzag-armchair and zigzag-zigzag CNTs.
基金Project supported by the National Natural Science Foundation of China(Grant No.51322502)
文摘Piezoelectric shunting arrays are employed to control the wave propagation in flexible beams. Contrary to conven- tional symmetric configuration, a substrate beam with anti-symmetric shunting arrays is investigated by adapted transfer matrix method. Compared with symmetric scheme, the anti-symmetric one demonstrates some distinctive characteristics. Primarily, the longitudinal and fiexural waves are coupled, so they are correlated and must be considered simultaneously. Moreover, the attenuation of flexural wave is much stronger in anti-symmetric scenario, while the longitudinal wave demon- strates the converse side. As a result, the anti-symmetric scheme can be utilized to improve the vibration isolation capability of shunting arrays. Finally, the theoretical analyses are validated by finite element simulations.
文摘Density functional theory calculations within the G03W package, with B3LYP exchange functional and applying basis set 6 - 31 G (d,p) are performed. The surface reactivity and electronic properties of endo-hydrogenation and exo-hydrogenation fullerene cages are studied. It is found that the surface reactivity of mono-hydrogenation fullerene cages is larger than the surface reactivity of un-hydrogenation fullerene cages and the later is larger than the fully hydrogenation fullerene cages. In addition, the calculations show that the endo-hydrogenation fullerene cages possess the same band gaps as the un-hydrogenation fullerene cages, however, the exo-hydrogenation is reduced the band gaps of the un-hydrogenated fullerene cages form ~7 eV to ~5 eV.