The laminar and turbulent flows past an axi-symmetric body with a ring wingwere investigated numerically at various attack angles (0°-20°) for the Reynolds numbers rangingfrom 10~3 to 10~7. The DDM (Domain D...The laminar and turbulent flows past an axi-symmetric body with a ring wingwere investigated numerically at various attack angles (0°-20°) for the Reynolds numbers rangingfrom 10~3 to 10~7. The DDM (Domain Decomposition Method) with the Schwarz iterative method based onfinite difference approximation was applied to simulate this problem. The primitive variableformulation was used for the solution of the incompressible Navier-Stoke equations. The velocityfield was calculated from the unsteady momentum equation by marching in time. The continuityequation was replaced by a Poisson-type equation for the pressure with the Neumann boundaryconditions. The Baldwin-Lomax model was adopted to simulate turbulence effect. The leap frogimplicit iterative method was used for the time difference approximations. The computed pressure atthe front stagnation point is found to have a small deviation, less than 10%, from the theoreticalvalue. The outlet flux has a loss about 5%. The lift coefficients increase linearly with the attackangle, but for attack angles greater than 15° the lift coefficients show mild decrease. Thefriction drag coefficients are insensitive to the attack angles, but the pressure drag coefficientsincrease markedly with the attack angles. In addition, complex flow patterns are revealed within thevicinity of the ring wing.展开更多
Entropy represents the dissipation rate of energy. Through direct numerical simulation (DNS) of supersonic compression ramp flow, we find the value of entropy is monotonously decreasing along the wall-normal directi...Entropy represents the dissipation rate of energy. Through direct numerical simulation (DNS) of supersonic compression ramp flow, we find the value of entropy is monotonously decreasing along the wall-normal direction no matter in the attached or the separated region. Based on this feature, a new version of Baldwin-Lomax turbulence model (BL-entropy) is proposed in this paper. The supersonic compression ramp and cavity-ramp flows in which the original Baldwin-Lomax model fails to get convergent solutions are chosen to evaluate the performance of this model. Results from one-equation Spalart-Allmaras model (SA) and two-equation Wilcox k-x model are also included to compare with available experimental and DNS data. It is shown that BLentropy could conquer the essential deficiency of the original version by providing a more physically meaningful length scale in the complex flows. Moreover, this method is simple, computationally efficient and general, making it applicable to other models related with the supersonic boundary layer.展开更多
文摘The laminar and turbulent flows past an axi-symmetric body with a ring wingwere investigated numerically at various attack angles (0°-20°) for the Reynolds numbers rangingfrom 10~3 to 10~7. The DDM (Domain Decomposition Method) with the Schwarz iterative method based onfinite difference approximation was applied to simulate this problem. The primitive variableformulation was used for the solution of the incompressible Navier-Stoke equations. The velocityfield was calculated from the unsteady momentum equation by marching in time. The continuityequation was replaced by a Poisson-type equation for the pressure with the Neumann boundaryconditions. The Baldwin-Lomax model was adopted to simulate turbulence effect. The leap frogimplicit iterative method was used for the time difference approximations. The computed pressure atthe front stagnation point is found to have a small deviation, less than 10%, from the theoreticalvalue. The outlet flux has a loss about 5%. The lift coefficients increase linearly with the attackangle, but for attack angles greater than 15° the lift coefficients show mild decrease. Thefriction drag coefficients are insensitive to the attack angles, but the pressure drag coefficientsincrease markedly with the attack angles. In addition, complex flow patterns are revealed within thevicinity of the ring wing.
基金National Basic Research Program of China(No.2009CB724104)the Innovation Foundation of BUAA for Ph.D.Graduates(No.300521)
文摘Entropy represents the dissipation rate of energy. Through direct numerical simulation (DNS) of supersonic compression ramp flow, we find the value of entropy is monotonously decreasing along the wall-normal direction no matter in the attached or the separated region. Based on this feature, a new version of Baldwin-Lomax turbulence model (BL-entropy) is proposed in this paper. The supersonic compression ramp and cavity-ramp flows in which the original Baldwin-Lomax model fails to get convergent solutions are chosen to evaluate the performance of this model. Results from one-equation Spalart-Allmaras model (SA) and two-equation Wilcox k-x model are also included to compare with available experimental and DNS data. It is shown that BLentropy could conquer the essential deficiency of the original version by providing a more physically meaningful length scale in the complex flows. Moreover, this method is simple, computationally efficient and general, making it applicable to other models related with the supersonic boundary layer.