We construct new HLL-type moving-water equilibria preserving upwind schemes for the one-dimensional Saint-Venant system of shallow water equations with nonflat bottom topography.The designed first-and secondorder sche...We construct new HLL-type moving-water equilibria preserving upwind schemes for the one-dimensional Saint-Venant system of shallow water equations with nonflat bottom topography.The designed first-and secondorder schemes are tested on a number of numerical examples,in which we verify the well-balanced property as well as the ability of the proposed schemes to accurately capture small perturbations of moving-water steady states.展开更多
The work presented in this paper concerns with analysis and synthesis of the two-dimensional Infinite Impulse Response (IIR) filters based on model order reduction. The synthesis is performed with two methods, the Pro...The work presented in this paper concerns with analysis and synthesis of the two-dimensional Infinite Impulse Response (IIR) filters based on model order reduction. The synthesis is performed with two methods, the Prony's method (Prony modified) and Iterative method, in the spatial domain, and with the method of Semi-Definite iterative Programming (SDP), in the frequency domain. After synthesis, we make an order reduction of the filter model by the Quasi-Gramians method.展开更多
基金NSFC grant(No.11771201)by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)。
文摘We construct new HLL-type moving-water equilibria preserving upwind schemes for the one-dimensional Saint-Venant system of shallow water equations with nonflat bottom topography.The designed first-and secondorder schemes are tested on a number of numerical examples,in which we verify the well-balanced property as well as the ability of the proposed schemes to accurately capture small perturbations of moving-water steady states.
文摘The work presented in this paper concerns with analysis and synthesis of the two-dimensional Infinite Impulse Response (IIR) filters based on model order reduction. The synthesis is performed with two methods, the Prony's method (Prony modified) and Iterative method, in the spatial domain, and with the method of Semi-Definite iterative Programming (SDP), in the frequency domain. After synthesis, we make an order reduction of the filter model by the Quasi-Gramians method.