当电网不对称时,PWM整流器最大运行功率会受到功率器件容量的限制而降低。该文基于瞬时功率理论分析了PWM整流器在电网不对称时的数学模型。介绍了电网不对称时两种整流器的控制策略:平衡的正序电流控制(balanced positive sequence cur...当电网不对称时,PWM整流器最大运行功率会受到功率器件容量的限制而降低。该文基于瞬时功率理论分析了PWM整流器在电网不对称时的数学模型。介绍了电网不对称时两种整流器的控制策略:平衡的正序电流控制(balanced positive sequence current control,BPSC)和瞬时有功功率控制(instantaneous active power control,IAPC)。采用BPSC策略能够扩展PWM整流器最大运行功率,但有功功率波动较大,而IAPC策略能够抑制有功功率波动,但运行功率较小。在此基础上文中提出了一种平衡正序电流和瞬时有功功率的协调控制策略(hybrid balanced positive sequence and instantaneous active power control,HBPSIAPC),从而实现PWM整流器功率扩展和有功功率波动最小。通过采用标幺值,简化了理论推导和分析过程。最后,在实验室搭建了PWM整流器的实验平台,验证了所提出控制策略的可行性。展开更多
文摘当电网不对称时,PWM整流器最大运行功率会受到功率器件容量的限制而降低。该文基于瞬时功率理论分析了PWM整流器在电网不对称时的数学模型。介绍了电网不对称时两种整流器的控制策略:平衡的正序电流控制(balanced positive sequence current control,BPSC)和瞬时有功功率控制(instantaneous active power control,IAPC)。采用BPSC策略能够扩展PWM整流器最大运行功率,但有功功率波动较大,而IAPC策略能够抑制有功功率波动,但运行功率较小。在此基础上文中提出了一种平衡正序电流和瞬时有功功率的协调控制策略(hybrid balanced positive sequence and instantaneous active power control,HBPSIAPC),从而实现PWM整流器功率扩展和有功功率波动最小。通过采用标幺值,简化了理论推导和分析过程。最后,在实验室搭建了PWM整流器的实验平台,验证了所提出控制策略的可行性。