Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf...Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.展开更多
Dry friction damping structures are widely-used in aero-engines to mitigate vibration.The nonlinear nature of friction and the two-dimensional in-plane motion on the contact interface bring challenges to accurately an...Dry friction damping structures are widely-used in aero-engines to mitigate vibration.The nonlinear nature of friction and the two-dimensional in-plane motion on the contact interface bring challenges to accurately and efficiently predict the forced response of frictionally damped structures.The state-of-the-art Multi-Harmonic Balance Method(MHBM)on quasi-3D contact model in engineering cannot precisely capture the kinematics on the friction interface although the efficiency is high.The full-3D contact model can describe the constitutive relationship of the interface in a more accurate manner;however,the efficiency and convergence are not guaranteed for large-scale models.In this paper,a semi-analytical MHBM on full-3D contact model is proposed.The original Trajectory Tracking Method(TTM)for evaluating the contact force is reformulated to make the calculation more concise and the derivation of the Analytical Jacobian Matrix(AJM)feasible.Based on the chain rule of derivation,the AJM which is the core to upgrade the performance is deduced.Through a shrouded blade finite element model,the accuracy and efficiency of the proposed method are compared with both the MHBM on full-3D contact model with numerical Jacobian matrix and the MHBM on quasi-3D contact model with AJM.The results show that the AJM improves significantly the efficiency of the MHBM on full-3D contact model.The time cost of the proposed method is in the same order of magnitude as that of the MHBM on quasi-3D contact model.We also confirm that the full-3D contact model is necessary for the dynamic analyses of shrouded blades.If one uses the quasi-3D model,the estimation relative error of damping can even reach 31.8%in some cases.In addition,the AJM also brings benefits for stability analysis.It is highly recommended that engineers use the MHBM on full-3D contact model for the dynamic analysis and design of shrouded blades.展开更多
基金Projects(51478049,51778068)supported by the National Natural Science Foundation of ChinaProject(14JJ2075,2019JJ40301)supported by the Hunan Natural Science Foundation of China+1 种基金Project(17A010)supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(2017GK4034)supported by the Major Technological Achievements Transformation Program of Hunan Strategic Emerging Industries of China
文摘Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.
基金financially supported by the National Natural Science Foundation of China(Nos.52175071,91860205)the Major Projects of Aero-engines and Gas turbines(No.J2019-IV-023-0091)。
文摘Dry friction damping structures are widely-used in aero-engines to mitigate vibration.The nonlinear nature of friction and the two-dimensional in-plane motion on the contact interface bring challenges to accurately and efficiently predict the forced response of frictionally damped structures.The state-of-the-art Multi-Harmonic Balance Method(MHBM)on quasi-3D contact model in engineering cannot precisely capture the kinematics on the friction interface although the efficiency is high.The full-3D contact model can describe the constitutive relationship of the interface in a more accurate manner;however,the efficiency and convergence are not guaranteed for large-scale models.In this paper,a semi-analytical MHBM on full-3D contact model is proposed.The original Trajectory Tracking Method(TTM)for evaluating the contact force is reformulated to make the calculation more concise and the derivation of the Analytical Jacobian Matrix(AJM)feasible.Based on the chain rule of derivation,the AJM which is the core to upgrade the performance is deduced.Through a shrouded blade finite element model,the accuracy and efficiency of the proposed method are compared with both the MHBM on full-3D contact model with numerical Jacobian matrix and the MHBM on quasi-3D contact model with AJM.The results show that the AJM improves significantly the efficiency of the MHBM on full-3D contact model.The time cost of the proposed method is in the same order of magnitude as that of the MHBM on quasi-3D contact model.We also confirm that the full-3D contact model is necessary for the dynamic analyses of shrouded blades.If one uses the quasi-3D model,the estimation relative error of damping can even reach 31.8%in some cases.In addition,the AJM also brings benefits for stability analysis.It is highly recommended that engineers use the MHBM on full-3D contact model for the dynamic analysis and design of shrouded blades.