回环检测又被称为位置识别,是“同步定位与建图”(Simultaneous Localization And Mapping,SLAM)系统中根据图像间的相似度判断运动轨迹是否经过重复地点(即存在回环)的功能,起到阶段性消除累积误差的作用。聚焦于视觉SLAM系统这一特定...回环检测又被称为位置识别,是“同步定位与建图”(Simultaneous Localization And Mapping,SLAM)系统中根据图像间的相似度判断运动轨迹是否经过重复地点(即存在回环)的功能,起到阶段性消除累积误差的作用。聚焦于视觉SLAM系统这一特定主题下的回环检测主题进行研究,概述了SLAM系统的基本功能与基本组成,分析了视觉SLAM系统中回环检测的原理与工作流程、前置问题、评测指标。剖析了回环检测发展过程中产生的系列方法,归类了视觉SLAM系统中回环检测存在的两类算法——基于词袋模型的回环检测算法和基于深度学习的回环检测算法,并对这两类算法的原理及优缺点进行了深入分析与总结。分析表明,基于词袋模型的回环检测算法因其在实时性上的优势仍处于主流,基于深度学习的回环检测算法具有较好的准确率和鲁棒性,但受限于设备对计算资源的分配,这一类做法如何应用于注重实时性的视觉SLAM系统仍是亟待解决的问题。最后,对回环检测面临的挑战和存在的问题进行了分析与展望。展开更多
文摘改进索引术语质量的衡量方法可以有效提高IR系统的检索效率,但术语的固有属性易受文档长度影响,难以全面衡量术语质量。对此,本文从术语内在的区分性出发,借鉴词袋模型的基本思想,提出了术语区分能力(term discriminative capacity,TDC)这一理论及3种不同的计算方法。本文还采集了Web of Science的3个子数据库中包含4个著录项的900条记录作为实验数据,来实现TDC的大规模计算,并观察3种算法在实践中的差异。经过实验分析得出,计算术语区分能力的最佳方法为TDC-T,该算法在多个方面表现稳定,且不受DF值的影响,可以作为衡量术语质量的全新指标,记为TDC。但是本研究所选取的A&HCI数据库的记录较少,这或许会造成另两个领域计算结果的失衡。
文摘回环检测又被称为位置识别,是“同步定位与建图”(Simultaneous Localization And Mapping,SLAM)系统中根据图像间的相似度判断运动轨迹是否经过重复地点(即存在回环)的功能,起到阶段性消除累积误差的作用。聚焦于视觉SLAM系统这一特定主题下的回环检测主题进行研究,概述了SLAM系统的基本功能与基本组成,分析了视觉SLAM系统中回环检测的原理与工作流程、前置问题、评测指标。剖析了回环检测发展过程中产生的系列方法,归类了视觉SLAM系统中回环检测存在的两类算法——基于词袋模型的回环检测算法和基于深度学习的回环检测算法,并对这两类算法的原理及优缺点进行了深入分析与总结。分析表明,基于词袋模型的回环检测算法因其在实时性上的优势仍处于主流,基于深度学习的回环检测算法具有较好的准确率和鲁棒性,但受限于设备对计算资源的分配,这一类做法如何应用于注重实时性的视觉SLAM系统仍是亟待解决的问题。最后,对回环检测面临的挑战和存在的问题进行了分析与展望。