The feasibility of using anaerobic baffled reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented unde...The feasibility of using anaerobic baffled reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented under different peak flow factors (PFF of 1 to 6), superficial gas velocities (between 0.6 and 3.1 cm/hr) and hydraulic retention times (HRT) (24, 36 and 48 hr). Residence time distribution (RTD) analyses were carded out to investigate the hydraulic characteristics of the ABR. It was found that the PFF resulted in hydraulic dead space. The dead space did not exceed 13% at PFF of 1, 2 and 4 while there was 2-fold increase (26%) at PFF of 6. Superficial gas velocities did not result in more (biological) dead space. The mixing pattern of ABR tended to be a completely- mixed reactor when PFF increased. Superficial gas velocities did not affect mixing pattern. The effects of PFF on mixing pattern could be minimized by higher HRT (48 hr). The tank-in-series (TIS) model (N = 4) was suitable to describe the hydraulic behaviour of the studied system. The HRT of 48 hr was able to maintain the mixing pattern under different flow patterns, introducing satisfactory hydraulic efficiency. Chemical oxygen demand (COD) and total suspended solids (TSS) removals under all flow patterns were achieved more than 85% and 90%, respectively. The standard deviation of effluent COD and TSS concentration did not exceed 15 mg/L.展开更多
The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier...The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier anaerobic baffled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions, namely, feed strengths of 300-600 mg/L, HRTs of 9- 18 h, and temperatures of 10-28℃. Generally, SMP production increased with increasing feed strength and decreasing temperature. At high temperature (28℃), SMP production increased with decreasing HRT. As the temperature was decreased to 18 and 10℃, the SMP production was at its peak for 12 h HRT. Therefore, temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio was found at high temperature and long HRT because of complete volatile fatty acid degradation. SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR. As a secondary metabolite, some SMP could be consumed at lower feed strength.展开更多
Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems.However,nitrogen removal efficiency is usually limited due to the low carbon/nitrogen...Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems.However,nitrogen removal efficiency is usually limited due to the low carbon/nitrogen(C/N) ratio.A common solution is to add external carbon sources,but amount of liquid is difficult to determine.Therefore,a combined wood-chip-framework substrate(with wood,slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem.Results show that the removal rate of ammonia nitrogen(NH_4~+-N),total nitrogen(TN) and chemical oxygen demand(COD) could reach 37.5%-85%,57.4%-86%,32.4%-78%,respectively,indicating the combined substrate could diffuse sufficient oxygen for the nitrification process(slag and gravel zone) and provide carbon source for denitrification process(wood-chip zone).The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip,respectively.Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process,while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process.This study provides a new idea for wetland treatment of high-strength nitrogen wastewater.展开更多
To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floati...To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floating particles in transformative Kanbara Reactor(KR) are measured in one and four baffled stirred tanks experimentally. Then numerical simulations with standard k-ε model coupled with volume of fluid model(VOF) and discrete phase model(DPM) are conducted to analyze the flow field at the just drawdown speed Njd. The torques on the impeller obtained from experiments and simulations agree well with each other, which indicates the validity of our numerical simulations. Based on the simulations, three main drawdown mechanisms for floating particles, the axial circulation, turbulent fluctuation and largescale eddies, are analyzed. It's found that the axial circulation dominates the drawdown process at small submergence(S = 1/4 T and 1/3 T) and the large-scale eddies play a major role at large submergence(S = 2/3 T and 3/4 T). Besides, the turbulent fluctuation affects the drawdown process significantly for up pumping mode at small submergence(S = 1/4 T and 1/3 T) and for down pumping mode at large submergence(S = 2/3 T and 3/4 T). This paper helps to provide a more comprehensive understanding of the KR desulphurizer drawdown process in the baffled stirred tank.展开更多
Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), a...Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.展开更多
Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the sa...Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carded out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested,展开更多
The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental dama...The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental damages. In the present study, a series of experimental tests are performed to investigate the sloshing phenomenon in a baffled rectangular storage tank. In addition, the sloshing phenomenon is also modeled by using Open Foam. Based on the experimental and numerical studies, optimization of the geometric parameters of the tank is performed based on some criteria such as tank area, entropy generation, and the horizontal force exerted on the tank area due to the sloshing phenomenon.The optimization is also carried out based on the entropy generation minimization analysis. It is noted that the optimum baffle height is in the range of h_b/h_w=0.5-0.75 in the present study(where h_b and h_w are the baffle height and water depth, respectively). Based on the results, the optimal design of the tank is achieved with R_A= 0.9-1.0(where R_A=L/W, L and W are the length and width of the tank, respectively). The results also show that the increase of h_b can lead to a decrease of the maximum pressure and horizontal force exerted on the tank. It is also noted that the horizontal force exerted on the tank firstly continues to increase as the sway motion amplitude increases.However, as the normalized motion amplitude parameter, a/L(The parameter a is the motion amplitude), exceeds0.067, the effect of motion amplitude on the force is not obvious. The same optimization is also performed in the multiple-variable-baffled tank and prismatic storage tank.展开更多
A finite difference/boundary integral procedure to determine theacoustic reflected pressure from a fluid-loaded bi-laminated plate isdescribed. The bi-laminate is composed of a piezoelectric layer andan elastic layer ...A finite difference/boundary integral procedure to determine theacoustic reflected pressure from a fluid-loaded bi-laminated plate isdescribed. The bi-laminate is composed of a piezoelectric layer andan elastic layer in contact with the fluid, and is held by anacoustically hard baffle. In the numerical model, the fluid pressureat fluid/solid interface is replaced by a continuum of point sourcesweighted by the normal acceleration of the elastic plate, and thegoverning equation system is solved in the solid domain.展开更多
We investigated the performance of a 15.3 L capacity anaerobic baffled reactor (ABR) toward the treatment of low-strength domestic wastewater. The start- up period of the ABR was finished within approximately 130 da...We investigated the performance of a 15.3 L capacity anaerobic baffled reactor (ABR) toward the treatment of low-strength domestic wastewater. The start- up period of the ABR was finished within approximately 130 days at a temperature below 25~C. The average CODcr in the effluent was 165 mg.L 1 and the corresponding CODcr removal efficiency of the ABR was 52.3%. During the third stage (from day 130 to day 233) of ABR operation, the average CODcr in the effluent reached 71 mg· L^-1, which meets the secondary discharge requirement of the Integrated Wastewater Discharge Standard (GB 18918-2002, China). Moreover, partial microbial separa- tion was observed along the five ABR compartments through scanning electron microscopic images. The geometric mean diameter of bioparticles in the five compartments increased from 0.050 mm to 0.111, 0.107, 0.104, 0.110, and 0.103 mm during the start-up stage. After operation for 179days, the further increased to 0.376, corresponding diameters 0.225, 0.253, 0.239, and 0.288mm, respectively. The fractal dimensions of the bioparticles indicated that these particles have smoother surfaces and more compact structures during ABR operation. Morphological analysis of the bioparticle sections demonstrated that the bioparticles have a pore volume of 30%-55%. The highest porosity was observed for the bioparticles in the second ABR compartment, whereas the lowest fractal dimension ofbioparticle section was observed in the fifth compartment.展开更多
To meet the rapidly increasing demand for energy and the dramatic depletion of conventional crude oil,it is imperative to utilize sour naphtha.With no coke being produced,oxidative desulfurization(ODS)of naphtha lower...To meet the rapidly increasing demand for energy and the dramatic depletion of conventional crude oil,it is imperative to utilize sour naphtha.With no coke being produced,oxidative desulfurization(ODS)of naphtha lowers its sulfur content and average molecular weight.In this article,we outline a method for heavy naphtha non-extractive ODS using a very stable catalyst.The technique involves the use of a solid catalyst with oxygen gas as the oxidant.This necessitated relatively high mixing intensities;hence a three-phase Oscillatory Baffled Reactor(OBR)was used.The catalyst was based on the zeolite ZSM-5,prepared from natural kaolin by a series of delamination and activation steps and impregnated with Fe.A TiO2 nanolayer was applied,using the sol-gel method,to prevent rapid deactivation.The reactor performance was evaluated to minimize the sulfur content in the naphtha fuel.Due to the protective coating,the sulfur conversion stabilized at 90%.The results of this work establish the use of natural clay-based catalysts in a continuous,three-phase ODS,particularly with regard to proving long-term stability.It also showed that modest ODS can be achieved using an environmentally friendly oxidant,at mild operating conditions,whilst maintaining stability.展开更多
Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisecti...Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisection, quadrant and sextant sector) were investigated. Numerical simulations were performed on HBHE at three helix an- gles (10°, 25° and 40°) by the software ANSYS CFX. Analyses of numerical results indicate that the sextant HBHE shows relatively better fluid flow performance because the leakage flow in the triangle area is evidently reduced and the fluid streamline appears much closer to an ideal spiral flow, while the trisection and quadrant HBHE show more scattered and disordered streamline distributions. The convective heat transfer coefficient and pressure drop in three types of HBHE were presented. Further investigations on the shell side performance with different helical baf- fles were implemented by the field synergy theory. Both theoretical and numerical analyses gave support on the re- lations between helical baffle shape and shell-side performance. This paper may provide useful reference for the selection of baffle shade and auantitv in HBHE.展开更多
In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzin...In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzing three different methods to account for acoustic sources.These are a discretized baffled piston using the discrete calculation method(DCM),a closed cylindrical volume using the boundary element method(BEM)and radiating elastic disks in a cubic enclosure solved with the finite element method(FEM).We provide the validation of the baffled piston and the BEM using measurements of the noise emission of a railway wheel by considering ground reflections in the numerical models.Selected space-resolved waveforms are compared with experimental results as well as with a fluid-structure interaction finite element model.The computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted,and the baffled pistons limitations caused by a lack of edge radiation effects are investigated.展开更多
[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,T...[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,TP,NH+4-N,CODCr,SS,SD,etc.were determined in the band baffled surface flow wetlands with total area of 7 400 m2 at JiaLu riverside.[Result] Baffled surface flow wetlands could improve the effluent quality significantly,could enhance transparency and dissolved oxygen content and also could decrease SS content.The removal rate of TN was kept at more than 73% in summer and decreased to 23% in early winter;The removal rate of TP was little influenced by temperature,and it was kept at more than 77% in summer and still kept at more than 69% in autumn and winter;The removal rate of NH+4-N was kept at more than 83% in summer and decreased slightly in autumn and winter,but still kept at more than 75%;The removal rate of CODCr ranged from 14% to 50%.[Conclusion] Baffled surface flow wetlands could effectively improve the purification effect of surface flow wetlands,which is a feasible way for ecological restoration.展开更多
The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and com...The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance.展开更多
This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesi...This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.展开更多
The aim of this paper is to study the effect of agitator’s types on the turbulent flows in stirred tanks without and with baffles.The hydrodynamics behavior induced by four different agitator’s types:a Rushton turbi...The aim of this paper is to study the effect of agitator’s types on the turbulent flows in stirred tanks without and with baffles.The hydrodynamics behavior induced by four different agitator’s types:a Rushton turbine(RT),a circular blade turbine(CBT),a diverging triangular blade turbine(DTBT)and converging triangular blade turbine(CTBT)are numerically predicted by solving the Navier-Stokes equations and RNGκ–εturbulent model.The simulations are carried out using the Multi Reference Frame(MRF)approach.The numerical results showed good agreement with experiment.We find that the agitator CTBT gives an important profit on the power consumption per report/ratio the others and DTBT give a good reduction of the vortex size of the impeller angles.展开更多
An anaerobic baffled reactor is a system developed in recent decades and has been used as part of the treatment of high-strength wastewater. Since the function of this system is based on its hydrodynamic features, hyd...An anaerobic baffled reactor is a system developed in recent decades and has been used as part of the treatment of high-strength wastewater. Since the function of this system is based on its hydrodynamic features, hydrodynamics and the regime of the flow through the reactor are crucial. In this study, a prototype reactor with eight chambers, which had a total volume of 48 L, and a model reactor, whose dimensions were half of those of the prototype reactor, were used. The Froude dynamic similitude in these reactors was investigated. The results show that the curve dimensionless variances were 0.089 and 0.096 for the prototype and model reactors, respectively, the short-circuiting indices were 0.483 and 0.489 for the prototype and model reactors, respectively, the effective volume and short-circuiting index measurement errors were both 1%, the hydraulic efficiency error was 2%, and the Peclet and dispersion number errors were both 7%. Most of the compared indices were close to one another in value. Therefore, the model reactor can be used based on the Froude dynamic similitude to determine hydrodynamic charac-teristics of a baffled reactor at a full scale.展开更多
Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, tw...Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers,the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as well as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20°(20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overall heat transfer coefficient K, shell-side heat transfer coefficient hoand shell-side average comprehensive index ho/Δpo.展开更多
Dispersants, usually blending with several surfactants and a solvent, are used to enhance oil spill dispersion as small droplets in water column. Although there is growing acceptance of dispersants as a counter measur...Dispersants, usually blending with several surfactants and a solvent, are used to enhance oil spill dispersion as small droplets in water column. Although there is growing acceptance of dispersants as a counter measure to marine oil spills around the world, the two major issues with the dispersants are their toxicity to marine life and dispersion effectiveness (DE) for crude-oil, especially for heavy oil. To develop more efficient and less toxic dispersants, two kinds of sorbitol derivant nonionic surfactant (polysorbate 85 and sorbeth-40 tetraoleate), two kinds of glycolipid biosurfactants (rhamnolipid and sophorolipid) and less toxic solvent ethylene glycol butyl ether were chosen in this study, and two dispersant formulations were optimized by uniform design methods. Effects of dispersant-to-oil ratio, temperature, salinity and pH on the performance of the two optimized dispersants were investigated. The two dispersants had high dispersion effectiveness (DE) for heavy crude oil, while both dispersants keep high DE at the dispersant-to-oil ratio below 1:25 and the temperature above 5 ℃. In addition, the two dispersants also performed well in a wide range of salinity and pH values. Finally, toxicity tests revealed that the two dispersants showed low toxicity to two kinds of fish (Danio rerio and Microgobius gulosus).展开更多
A novel hybrid anaerobic-contact oxidation biofilm baffled reactor (HAOBR) was developed to simultaneously remove nitrogenous and carbonaceous organic pollutants from decentralized molasses wastewater in the study. ...A novel hybrid anaerobic-contact oxidation biofilm baffled reactor (HAOBR) was developed to simultaneously remove nitrogenous and carbonaceous organic pollutants from decentralized molasses wastewater in the study. The study was based on the inoculation of anaerobic granule sludge in anaerobic compartments and the installation of combination filler in aerobic compartments. The performance of reactor system was studied regarding the hydraulic retention time (HRT), microbial characteristics and the gas water ratio (GWR). When the HRT was 24h and the GWR was 20:1, total ammonia and chemical oxygen demand (COD) of the effluent were reduced by 99% and 91.8%, respectively. The reactor performed stably for treating decentralized molasses wastewater. The good performance of the reactor can be attributed to the high resistance of COD and hydraulic shock loads. In addition, the high solid retention time of contact oxidation biofilm contributed to stable performance of the reactor.展开更多
基金supported by the Swiss National Centre of Competence in Research (NCCR) North-South:Research Partnerships for Mitigating Syndromes of Global Change, and the Swiss National Science Foundation and the Swiss Agency for Development and Cooperation
文摘The feasibility of using anaerobic baffled reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented under different peak flow factors (PFF of 1 to 6), superficial gas velocities (between 0.6 and 3.1 cm/hr) and hydraulic retention times (HRT) (24, 36 and 48 hr). Residence time distribution (RTD) analyses were carded out to investigate the hydraulic characteristics of the ABR. It was found that the PFF resulted in hydraulic dead space. The dead space did not exceed 13% at PFF of 1, 2 and 4 while there was 2-fold increase (26%) at PFF of 6. Superficial gas velocities did not result in more (biological) dead space. The mixing pattern of ABR tended to be a completely- mixed reactor when PFF increased. Superficial gas velocities did not affect mixing pattern. The effects of PFF on mixing pattern could be minimized by higher HRT (48 hr). The tank-in-series (TIS) model (N = 4) was suitable to describe the hydraulic behaviour of the studied system. The HRT of 48 hr was able to maintain the mixing pattern under different flow patterns, introducing satisfactory hydraulic efficiency. Chemical oxygen demand (COD) and total suspended solids (TSS) removals under all flow patterns were achieved more than 85% and 90%, respectively. The standard deviation of effluent COD and TSS concentration did not exceed 15 mg/L.
文摘The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier anaerobic baffled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions, namely, feed strengths of 300-600 mg/L, HRTs of 9- 18 h, and temperatures of 10-28℃. Generally, SMP production increased with increasing feed strength and decreasing temperature. At high temperature (28℃), SMP production increased with decreasing HRT. As the temperature was decreased to 18 and 10℃, the SMP production was at its peak for 12 h HRT. Therefore, temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio was found at high temperature and long HRT because of complete volatile fatty acid degradation. SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR. As a secondary metabolite, some SMP could be consumed at lower feed strength.
基金supported by the National Natural Science Foundation of China(No.41401548)the Jilin Provincial Research Foundation for Basic Research,China(No.20150520151JH)the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(Nos. ES201510,and HC201622)
文摘Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems.However,nitrogen removal efficiency is usually limited due to the low carbon/nitrogen(C/N) ratio.A common solution is to add external carbon sources,but amount of liquid is difficult to determine.Therefore,a combined wood-chip-framework substrate(with wood,slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem.Results show that the removal rate of ammonia nitrogen(NH_4~+-N),total nitrogen(TN) and chemical oxygen demand(COD) could reach 37.5%-85%,57.4%-86%,32.4%-78%,respectively,indicating the combined substrate could diffuse sufficient oxygen for the nitrification process(slag and gravel zone) and provide carbon source for denitrification process(wood-chip zone).The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip,respectively.Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process,while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process.This study provides a new idea for wetland treatment of high-strength nitrogen wastewater.
基金Supported by the National Natural Science Foundation of China(51474109,51609090,51679097)the Science Research Project of Huazhong University of Science and Technology(0118140077,2006140115)
文摘To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floating particles in transformative Kanbara Reactor(KR) are measured in one and four baffled stirred tanks experimentally. Then numerical simulations with standard k-ε model coupled with volume of fluid model(VOF) and discrete phase model(DPM) are conducted to analyze the flow field at the just drawdown speed Njd. The torques on the impeller obtained from experiments and simulations agree well with each other, which indicates the validity of our numerical simulations. Based on the simulations, three main drawdown mechanisms for floating particles, the axial circulation, turbulent fluctuation and largescale eddies, are analyzed. It's found that the axial circulation dominates the drawdown process at small submergence(S = 1/4 T and 1/3 T) and the large-scale eddies play a major role at large submergence(S = 2/3 T and 3/4 T). Besides, the turbulent fluctuation affects the drawdown process significantly for up pumping mode at small submergence(S = 1/4 T and 1/3 T) and for down pumping mode at large submergence(S = 2/3 T and 3/4 T). This paper helps to provide a more comprehensive understanding of the KR desulphurizer drawdown process in the baffled stirred tank.
基金project supported by the Science and Technology Department of Zhejiang Province (2005C13003).
文摘Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No.2002AA601310).
文摘Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carded out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested,
基金inancially supported by the National Natural Science Foundation of China (Grant No. 51761135011)Joint supported by NSFC and Royal Society (Grant No. 52011530183)。
文摘The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental damages. In the present study, a series of experimental tests are performed to investigate the sloshing phenomenon in a baffled rectangular storage tank. In addition, the sloshing phenomenon is also modeled by using Open Foam. Based on the experimental and numerical studies, optimization of the geometric parameters of the tank is performed based on some criteria such as tank area, entropy generation, and the horizontal force exerted on the tank area due to the sloshing phenomenon.The optimization is also carried out based on the entropy generation minimization analysis. It is noted that the optimum baffle height is in the range of h_b/h_w=0.5-0.75 in the present study(where h_b and h_w are the baffle height and water depth, respectively). Based on the results, the optimal design of the tank is achieved with R_A= 0.9-1.0(where R_A=L/W, L and W are the length and width of the tank, respectively). The results also show that the increase of h_b can lead to a decrease of the maximum pressure and horizontal force exerted on the tank. It is also noted that the horizontal force exerted on the tank firstly continues to increase as the sway motion amplitude increases.However, as the normalized motion amplitude parameter, a/L(The parameter a is the motion amplitude), exceeds0.067, the effect of motion amplitude on the force is not obvious. The same optimization is also performed in the multiple-variable-baffled tank and prismatic storage tank.
基金the National Natural Science Foundation of China (No.10172039).
文摘A finite difference/boundary integral procedure to determine theacoustic reflected pressure from a fluid-loaded bi-laminated plate isdescribed. The bi-laminate is composed of a piezoelectric layer andan elastic layer in contact with the fluid, and is held by anacoustically hard baffle. In the numerical model, the fluid pressureat fluid/solid interface is replaced by a continuum of point sourcesweighted by the normal acceleration of the elastic plate, and thegoverning equation system is solved in the solid domain.
基金Acknowledgements This work was supported by the Fundamental Research Funds for the Central Universities (Nos. JC2011-1 and TD2010- 5), Major projects on control and rectification of water body pollution (No. 2008ZX07314-006-02), the National Natural Science Foundation of China (Grant Nos. 51078035 and 21177010), and the Ph.D. Programs Foundation of the Ministry of Education of China (No. 20100014110004).
文摘We investigated the performance of a 15.3 L capacity anaerobic baffled reactor (ABR) toward the treatment of low-strength domestic wastewater. The start- up period of the ABR was finished within approximately 130 days at a temperature below 25~C. The average CODcr in the effluent was 165 mg.L 1 and the corresponding CODcr removal efficiency of the ABR was 52.3%. During the third stage (from day 130 to day 233) of ABR operation, the average CODcr in the effluent reached 71 mg· L^-1, which meets the secondary discharge requirement of the Integrated Wastewater Discharge Standard (GB 18918-2002, China). Moreover, partial microbial separa- tion was observed along the five ABR compartments through scanning electron microscopic images. The geometric mean diameter of bioparticles in the five compartments increased from 0.050 mm to 0.111, 0.107, 0.104, 0.110, and 0.103 mm during the start-up stage. After operation for 179days, the further increased to 0.376, corresponding diameters 0.225, 0.253, 0.239, and 0.288mm, respectively. The fractal dimensions of the bioparticles indicated that these particles have smoother surfaces and more compact structures during ABR operation. Morphological analysis of the bioparticle sections demonstrated that the bioparticles have a pore volume of 30%-55%. The highest porosity was observed for the bioparticles in the second ABR compartment, whereas the lowest fractal dimension ofbioparticle section was observed in the fifth compartment.
基金supported by a grant from Petroleum Research and Development Center,Ministry of Oil,Iraq(No.304/16/1/2022).
文摘To meet the rapidly increasing demand for energy and the dramatic depletion of conventional crude oil,it is imperative to utilize sour naphtha.With no coke being produced,oxidative desulfurization(ODS)of naphtha lowers its sulfur content and average molecular weight.In this article,we outline a method for heavy naphtha non-extractive ODS using a very stable catalyst.The technique involves the use of a solid catalyst with oxygen gas as the oxidant.This necessitated relatively high mixing intensities;hence a three-phase Oscillatory Baffled Reactor(OBR)was used.The catalyst was based on the zeolite ZSM-5,prepared from natural kaolin by a series of delamination and activation steps and impregnated with Fe.A TiO2 nanolayer was applied,using the sol-gel method,to prevent rapid deactivation.The reactor performance was evaluated to minimize the sulfur content in the naphtha fuel.Due to the protective coating,the sulfur conversion stabilized at 90%.The results of this work establish the use of natural clay-based catalysts in a continuous,three-phase ODS,particularly with regard to proving long-term stability.It also showed that modest ODS can be achieved using an environmentally friendly oxidant,at mild operating conditions,whilst maintaining stability.
基金Supported by the National Natural Science Foundation of China(51106090)the National Key Basic Research Program of China(2013CB228305)the Independent Innovation Foundation of Shandong University(2012TS190)
文摘Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisection, quadrant and sextant sector) were investigated. Numerical simulations were performed on HBHE at three helix an- gles (10°, 25° and 40°) by the software ANSYS CFX. Analyses of numerical results indicate that the sextant HBHE shows relatively better fluid flow performance because the leakage flow in the triangle area is evidently reduced and the fluid streamline appears much closer to an ideal spiral flow, while the trisection and quadrant HBHE show more scattered and disordered streamline distributions. The convective heat transfer coefficient and pressure drop in three types of HBHE were presented. Further investigations on the shell side performance with different helical baf- fles were implemented by the field synergy theory. Both theoretical and numerical analyses gave support on the re- lations between helical baffle shape and shell-side performance. This paper may provide useful reference for the selection of baffle shade and auantitv in HBHE.
基金The project was commissioned and supported by the funding of the Federal Office of Environment(No.1337000438).
文摘In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzing three different methods to account for acoustic sources.These are a discretized baffled piston using the discrete calculation method(DCM),a closed cylindrical volume using the boundary element method(BEM)and radiating elastic disks in a cubic enclosure solved with the finite element method(FEM).We provide the validation of the baffled piston and the BEM using measurements of the noise emission of a railway wheel by considering ground reflections in the numerical models.Selected space-resolved waveforms are compared with experimental results as well as with a fluid-structure interaction finite element model.The computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted,and the baffled pistons limitations caused by a lack of edge radiation effects are investigated.
基金Supported by Deep Purification Technology Project of Mixed Mode Wetland for Sewage Plant Waster Water in Dryland(2006AA6Z325)~~
文摘[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,TP,NH+4-N,CODCr,SS,SD,etc.were determined in the band baffled surface flow wetlands with total area of 7 400 m2 at JiaLu riverside.[Result] Baffled surface flow wetlands could improve the effluent quality significantly,could enhance transparency and dissolved oxygen content and also could decrease SS content.The removal rate of TN was kept at more than 73% in summer and decreased to 23% in early winter;The removal rate of TP was little influenced by temperature,and it was kept at more than 77% in summer and still kept at more than 69% in autumn and winter;The removal rate of NH+4-N was kept at more than 83% in summer and decreased slightly in autumn and winter,but still kept at more than 75%;The removal rate of CODCr ranged from 14% to 50%.[Conclusion] Baffled surface flow wetlands could effectively improve the purification effect of surface flow wetlands,which is a feasible way for ecological restoration.
基金Project(50976035)supported by the National Natural Science Foundation of ChinaProject(4521ZK120064004)supported by the Science and Technology Commission Green Energy and Power Engineering of Special Fund Project of Shanghai,China
文摘The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance.
文摘This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.
文摘The aim of this paper is to study the effect of agitator’s types on the turbulent flows in stirred tanks without and with baffles.The hydrodynamics behavior induced by four different agitator’s types:a Rushton turbine(RT),a circular blade turbine(CBT),a diverging triangular blade turbine(DTBT)and converging triangular blade turbine(CTBT)are numerically predicted by solving the Navier-Stokes equations and RNGκ–εturbulent model.The simulations are carried out using the Multi Reference Frame(MRF)approach.The numerical results showed good agreement with experiment.We find that the agitator CTBT gives an important profit on the power consumption per report/ratio the others and DTBT give a good reduction of the vortex size of the impeller angles.
文摘An anaerobic baffled reactor is a system developed in recent decades and has been used as part of the treatment of high-strength wastewater. Since the function of this system is based on its hydrodynamic features, hydrodynamics and the regime of the flow through the reactor are crucial. In this study, a prototype reactor with eight chambers, which had a total volume of 48 L, and a model reactor, whose dimensions were half of those of the prototype reactor, were used. The Froude dynamic similitude in these reactors was investigated. The results show that the curve dimensionless variances were 0.089 and 0.096 for the prototype and model reactors, respectively, the short-circuiting indices were 0.483 and 0.489 for the prototype and model reactors, respectively, the effective volume and short-circuiting index measurement errors were both 1%, the hydraulic efficiency error was 2%, and the Peclet and dispersion number errors were both 7%. Most of the compared indices were close to one another in value. Therefore, the model reactor can be used based on the Froude dynamic similitude to determine hydrodynamic charac-teristics of a baffled reactor at a full scale.
基金Supported by the National Natural Science Foundation of China(50976022,51276035)the Provincial Science and Technology Innovation and Transformation of Achievements of Special Fund Project of Jiangsu Province(BY2011155)
文摘Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers,the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as well as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20°(20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overall heat transfer coefficient K, shell-side heat transfer coefficient hoand shell-side average comprehensive index ho/Δpo.
文摘Dispersants, usually blending with several surfactants and a solvent, are used to enhance oil spill dispersion as small droplets in water column. Although there is growing acceptance of dispersants as a counter measure to marine oil spills around the world, the two major issues with the dispersants are their toxicity to marine life and dispersion effectiveness (DE) for crude-oil, especially for heavy oil. To develop more efficient and less toxic dispersants, two kinds of sorbitol derivant nonionic surfactant (polysorbate 85 and sorbeth-40 tetraoleate), two kinds of glycolipid biosurfactants (rhamnolipid and sophorolipid) and less toxic solvent ethylene glycol butyl ether were chosen in this study, and two dispersant formulations were optimized by uniform design methods. Effects of dispersant-to-oil ratio, temperature, salinity and pH on the performance of the two optimized dispersants were investigated. The two dispersants had high dispersion effectiveness (DE) for heavy crude oil, while both dispersants keep high DE at the dispersant-to-oil ratio below 1:25 and the temperature above 5 ℃. In addition, the two dispersants also performed well in a wide range of salinity and pH values. Finally, toxicity tests revealed that the two dispersants showed low toxicity to two kinds of fish (Danio rerio and Microgobius gulosus).
基金This research was supported by the National High Technology Research and Development Program of China (Grant No. 2012BAJ21B04) and the National Natural Science Foundation of China (Grant No. 51108436).
文摘A novel hybrid anaerobic-contact oxidation biofilm baffled reactor (HAOBR) was developed to simultaneously remove nitrogenous and carbonaceous organic pollutants from decentralized molasses wastewater in the study. The study was based on the inoculation of anaerobic granule sludge in anaerobic compartments and the installation of combination filler in aerobic compartments. The performance of reactor system was studied regarding the hydraulic retention time (HRT), microbial characteristics and the gas water ratio (GWR). When the HRT was 24h and the GWR was 20:1, total ammonia and chemical oxygen demand (COD) of the effluent were reduced by 99% and 91.8%, respectively. The reactor performed stably for treating decentralized molasses wastewater. The good performance of the reactor can be attributed to the high resistance of COD and hydraulic shock loads. In addition, the high solid retention time of contact oxidation biofilm contributed to stable performance of the reactor.