Dispersion control is crucial in optical systems,and chromatic aberration is an important factor affecting imaging quality in imaging systems.Due to the inherent property of materials,dispersion engineering is complex...Dispersion control is crucial in optical systems,and chromatic aberration is an important factor affecting imaging quality in imaging systems.Due to the inherent property of materials,dispersion engineering is complex and needs to trade off other aberration in traditional ways.Although metasurface offers an effective method to overcome these limits and results in well-engineered dispersion,off-axis dispersion control is still a challenging topic.In this paper,we design a single-layer metalens which is capable of focusing at three wavelengths(473 nm,532 nm,and 632 nm)with different incident angles(0°,-17°and 17°)into the same point.We also demonstrate that this metalens can provide an alternative for the bulky color synthetic prism in a 3-chips digital micromirror device(DMD)laser projection system.Through this approach,various off-axis dispersion controlling optical devices could be realized.展开更多
5-axis machine tool plays an important role in high-speed and high-precision computer numerical control (CNC) machining of workpieces with complex shapes. A non-uniform rational B-spline (NURBS) interpolation form...5-axis machine tool plays an important role in high-speed and high-precision computer numerical control (CNC) machining of workpieces with complex shapes. A non-uniform rational B-spline (NURBS) interpolation format for 5-axis machining is pro- posed to adapt to the high speed machining (HSM). With this interpolation format, angles between orientation vectors are chosen as parameters of orientation B-spline constructed by an open controller to achieve reasonable orientation vectors in real-time interpolation process. Coordinated motion between linear axes and rotary axes is achieved by building a polynomial spline which relates interpolation arc lengths of position spline to angles of orientation spline. Algorithm routine of this interpolation format and its realization methods in the supported controller are discussed in detail. Finally, performance of the proposed NURBS in- terpolation format is demonstrated by a practical example.展开更多
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ...This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.展开更多
基金We acknowledge the financial support by the National Natural Science Foundation of China under contact Nos.61622508,61622509,and 61575201.
文摘Dispersion control is crucial in optical systems,and chromatic aberration is an important factor affecting imaging quality in imaging systems.Due to the inherent property of materials,dispersion engineering is complex and needs to trade off other aberration in traditional ways.Although metasurface offers an effective method to overcome these limits and results in well-engineered dispersion,off-axis dispersion control is still a challenging topic.In this paper,we design a single-layer metalens which is capable of focusing at three wavelengths(473 nm,532 nm,and 632 nm)with different incident angles(0°,-17°and 17°)into the same point.We also demonstrate that this metalens can provide an alternative for the bulky color synthetic prism in a 3-chips digital micromirror device(DMD)laser projection system.Through this approach,various off-axis dispersion controlling optical devices could be realized.
文摘5-axis machine tool plays an important role in high-speed and high-precision computer numerical control (CNC) machining of workpieces with complex shapes. A non-uniform rational B-spline (NURBS) interpolation format for 5-axis machining is pro- posed to adapt to the high speed machining (HSM). With this interpolation format, angles between orientation vectors are chosen as parameters of orientation B-spline constructed by an open controller to achieve reasonable orientation vectors in real-time interpolation process. Coordinated motion between linear axes and rotary axes is achieved by building a polynomial spline which relates interpolation arc lengths of position spline to angles of orientation spline. Algorithm routine of this interpolation format and its realization methods in the supported controller are discussed in detail. Finally, performance of the proposed NURBS in- terpolation format is demonstrated by a practical example.
基金supported in part by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(No.52075262,51905271,52275062)+1 种基金the Fok Ying-Tong Education Foundation of China(No.171044)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0471)。
文摘This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.