Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative resea...Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative research reports on the rock-breaking mechanism of axial and torsional coupled impact drilling tools.Considering the influence of the impact hammer geometry and movement on the dynamic load parameters(i.e.,wavelength,amplitude,frequency,and phase difference),a numerical model that includes a hard formation and single polycrystalline diamond compact cutter was established.The Riedel-Hiermaier-Thoma model,which considers the dynamic damage and strength behavior of rocks,was adopted to analyze the rock damage under axial and torsional impact loads.The numerical simu-lation results were verified by the experimental results.It was found that compared with conventional drilling,the penetration depths of axial,torsional,and axial-torsional coupled impact drilling increased by 31.3%,5.6%,and 34.7%,respectively.Increasing the wavelength and amplitude of the axial impact stress wave improved the penetration depth.When the bit rotation speed remained unchanged,increasing the frequency in the axial and circumferential directions had little effect on the penetration depth.However,as the frequency increased,the cutting surface became increasingly smooth,which reduced the occurrence of bit vibration.When the phase difference between the axial and circumfer-ential stress waves was 25%,the penetration depth significantly increased.In addition,the bit vibration problem can be effectively reduced.Finally,the adjustment of engineering and tool structure parameters is proposed to optimize the efficiency of the axial-torsional coupled impact drilling tool.展开更多
Drill string will sustain large uplift force during the shut-in period after gas overflow in an ultra-deep well, and in serious case, it will run out of the wellhead. A calculation model of uplift force was establishe...Drill string will sustain large uplift force during the shut-in period after gas overflow in an ultra-deep well, and in serious case, it will run out of the wellhead. A calculation model of uplift force was established to analyze dynamic change characteristics of the uplift force of drill string during the shut-in period, and then a management procedure for the uplift risk during the shut-in period after gas overflow in the ultra-deep well was formed. Cross section method and pressure area method were used to analyze the force on drill string after shut-in of well, it was found that the source of uplift force was the "fictitious force" caused by the hydrostatic pressure in the well. When the fictitious force is in the opposite direction to the gravity, it is the uplift force. By adopting the theory of annular multiphase flow, considering the effects of wellbore afterflow and gas slippage, the dynamic change of the pressure and fluid in the wellbore and the uplift force of drill string during the shut-in period were analyzed. The magnitude and direction of uplift force are related to the length of drill string in the wellbore and shut-in time, and there is the risk of uplift of drill string when the length of drill string in the wellbore is smaller than the critical drill string length or the shut in time exceeds the critical shut in time. A set of treatment method and process to prevent the uplift of drill string is advanced during the shut-in period after overflow in the ultra-deep well, which makes the risk management of the drill string uplift in the ultra-deep well more rigorous and scientific.展开更多
基金supported by the National Natural Science Foundation of China(52004013,U1762211).
文摘Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative research reports on the rock-breaking mechanism of axial and torsional coupled impact drilling tools.Considering the influence of the impact hammer geometry and movement on the dynamic load parameters(i.e.,wavelength,amplitude,frequency,and phase difference),a numerical model that includes a hard formation and single polycrystalline diamond compact cutter was established.The Riedel-Hiermaier-Thoma model,which considers the dynamic damage and strength behavior of rocks,was adopted to analyze the rock damage under axial and torsional impact loads.The numerical simu-lation results were verified by the experimental results.It was found that compared with conventional drilling,the penetration depths of axial,torsional,and axial-torsional coupled impact drilling increased by 31.3%,5.6%,and 34.7%,respectively.Increasing the wavelength and amplitude of the axial impact stress wave improved the penetration depth.When the bit rotation speed remained unchanged,increasing the frequency in the axial and circumferential directions had little effect on the penetration depth.However,as the frequency increased,the cutting surface became increasingly smooth,which reduced the occurrence of bit vibration.When the phase difference between the axial and circumfer-ential stress waves was 25%,the penetration depth significantly increased.In addition,the bit vibration problem can be effectively reduced.Finally,the adjustment of engineering and tool structure parameters is proposed to optimize the efficiency of the axial-torsional coupled impact drilling tool.
基金Supported by China National Science and Technology Major Project(2016ZX05020-006)
文摘Drill string will sustain large uplift force during the shut-in period after gas overflow in an ultra-deep well, and in serious case, it will run out of the wellhead. A calculation model of uplift force was established to analyze dynamic change characteristics of the uplift force of drill string during the shut-in period, and then a management procedure for the uplift risk during the shut-in period after gas overflow in the ultra-deep well was formed. Cross section method and pressure area method were used to analyze the force on drill string after shut-in of well, it was found that the source of uplift force was the "fictitious force" caused by the hydrostatic pressure in the well. When the fictitious force is in the opposite direction to the gravity, it is the uplift force. By adopting the theory of annular multiphase flow, considering the effects of wellbore afterflow and gas slippage, the dynamic change of the pressure and fluid in the wellbore and the uplift force of drill string during the shut-in period were analyzed. The magnitude and direction of uplift force are related to the length of drill string in the wellbore and shut-in time, and there is the risk of uplift of drill string when the length of drill string in the wellbore is smaller than the critical drill string length or the shut in time exceeds the critical shut in time. A set of treatment method and process to prevent the uplift of drill string is advanced during the shut-in period after overflow in the ultra-deep well, which makes the risk management of the drill string uplift in the ultra-deep well more rigorous and scientific.