This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can ...This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can be satisfied only if there is sufficient bandwidth available during resource scheduling and allocation. Unsatisfied requests were held in a queue. The metric of bandwidth utilization ratio was used to quantify the performance of our algorithms. By theoretical analysis, our algorithms can improve the average bandwidth usage ratio significantly, about 8%~10% without adding much computation complexity. Moreover, our algorithms outperform next fit with fragmentation (NFF) algorithm when the bandwidth resource is scarce. In this paper, the contributions follows: Introducing bandwidth packing problem into wireless network; Proposing two new bandwidth packing algorithms for wireless network where the complicate scheduling algorithms are prohibited; Studying the average performance of our algorithms mathematically, which agree well with the simulation results.展开更多
This paper deals with the fault detection observer design problem for switched system with all modes unstable.First,the error system model is presented.With the consideration of the instability caused by the unobserva...This paper deals with the fault detection observer design problem for switched system with all modes unstable.First,the error system model is presented.With the consideration of the instability caused by the unobservable condition of(Ai,Ci),a switching signal is obtained via average dwell time method and discretised Lyapunov function.By means of linear matrix inequalities,sufficient conditions pledging exponential stability and H∞performance are proposed.Through transferring the observer design problem into H∞performance analysis,proper observer gain is obtained via solving these LMIs.In the end,the validity of the proposed Luenberger observer is verified by an example.展开更多
Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used....Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used. In this paper a set of approximation algorithms is presented for cases in which the ability to preview at most k(〉=2) arriving bins is given. With the essential assumption that all bin sizes are not less than the largest item size, analytical results show the asymptotic worst case ratios of all k-bounded space and offiine algorithms are 2. Based on experiments by applying algorithms to instances in which item sizes and bin sizes are drawn independently from the continuous uniform distribution respectively in the interval [0,u] and [u,l ], averagecase experimental results show that, with fixed k, algorithms with the Best Fit packing(closing) rule are statistically better than those with the First Fit packing(closing) rule.展开更多
文摘This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can be satisfied only if there is sufficient bandwidth available during resource scheduling and allocation. Unsatisfied requests were held in a queue. The metric of bandwidth utilization ratio was used to quantify the performance of our algorithms. By theoretical analysis, our algorithms can improve the average bandwidth usage ratio significantly, about 8%~10% without adding much computation complexity. Moreover, our algorithms outperform next fit with fragmentation (NFF) algorithm when the bandwidth resource is scarce. In this paper, the contributions follows: Introducing bandwidth packing problem into wireless network; Proposing two new bandwidth packing algorithms for wireless network where the complicate scheduling algorithms are prohibited; Studying the average performance of our algorithms mathematically, which agree well with the simulation results.
基金supported by the NationalNatural Science Foundation of China[61873057]Natural Science Foundation of Jilin Province[20180520211JH]Jilin City Science and Technology Bureau[201831727,201831731].
文摘This paper deals with the fault detection observer design problem for switched system with all modes unstable.First,the error system model is presented.With the consideration of the instability caused by the unobservable condition of(Ai,Ci),a switching signal is obtained via average dwell time method and discretised Lyapunov function.By means of linear matrix inequalities,sufficient conditions pledging exponential stability and H∞performance are proposed.Through transferring the observer design problem into H∞performance analysis,proper observer gain is obtained via solving these LMIs.In the end,the validity of the proposed Luenberger observer is verified by an example.
文摘Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used. In this paper a set of approximation algorithms is presented for cases in which the ability to preview at most k(〉=2) arriving bins is given. With the essential assumption that all bin sizes are not less than the largest item size, analytical results show the asymptotic worst case ratios of all k-bounded space and offiine algorithms are 2. Based on experiments by applying algorithms to instances in which item sizes and bin sizes are drawn independently from the continuous uniform distribution respectively in the interval [0,u] and [u,l ], averagecase experimental results show that, with fixed k, algorithms with the Best Fit packing(closing) rule are statistically better than those with the First Fit packing(closing) rule.